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ABSTRACT

This paper presents a two-way coupling approach to simulate bouncing droplet phenomena by
incorporating the lubricated thin aerodynamic gap between fluid volumes. At the heart of our
framework lies a cut-cell representation of the thin air film between colliding liquid fluid volumes.
The air pressures within the thin film, modeled using a reduced fluid model based on the lubrication
theory, are coupled with the volumetric liquid pressures by the gradient across the liquid-air interfaces
and solved in a monolithic two-way coupling system. Our method can accurately solve liquid-
liquid interaction with air films without adaptive grid refinements, enabling accurate simulation of
many novel surface-tension-driven phenomena such as droplet collisions, bouncing droplets, and
promenading pairs.

Keywords fluid-fluid contact, surface tension flow, multi-phase fluid, cut-cell, thin film, walking droplet

1 Introduction

When fluid volumes get small, i.e., on the length scales between O(0.1) µm – O(1) mm, their interactions exhibit
complicated flow dynamics and geometric forms governed by many small-scale physical processes. For instance, a
fluid volume can collide and bounce Pan et al. [2008], walk Moláček and Bush [2013], Harris and Bush [2013], wrap
Py et al. [2007], Bico et al. [2018], Liu et al. [2022], glide Hale and Akers [2016], support and drive Hu et al. [2003], or
form non-manifold geometric structures Buckingham and Bush [2001], Zhu et al. [2014]. These flow processes are
remarkably different from their macroscopic counterparts, behaving like deformable solids (e.g., a fluid surface can
hold heavy objects, and fluid volumes can collide and bounce) rather than shear irresistible liquids. A dominant force
underpinning these small-scale flow processes is surface tension. The recent advances in computational physics Li et al.
[2020], Chen and Yang [2020], Chubynsky et al. [2020], Jiang et al. [2022], Liu et al. [2021], Yang et al. [2023] and
computer graphics Xing et al. [2022], Hyde et al. [2020], Chen et al. [2021], Liu et al. [2022], Deng et al. [2022] in
devising algorithms to accurately simulate surface tension with complex geometries and multi-physics interactions
have enabled numerical explorations of an ensemble of new interfacial and solid-fluid coupling phenomena that were
impractical to simulate with traditional methods.

However, among these new surface-tension phenomena being tackled, devising first-principle approaches to model the
intricate interactions between droplets and fluid volumes remains challenging due to the difficulties of handling the
multi-phase and multi-scale coupling. When a small droplet falls onto a pond surface, it could rebound, decrease its
size, and sit on the deforming surface for seconds long, before its eventual merge into the water bulk (e.g., see Couder
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et al. [2005a, 2010], Ding et al. [2012]). The physical mechanics underpinning this seemingly discrete phenomenon
lie in the evolution of a thin air gap between the droplet and the liquid surface. When two fluid volumes approach
each other, a thin layer of the surrounding air is trapped in the narrow gap between them. As the air gap’s thickness
decreases, the air viscosity dominates its dynamics according to the lubrication theory, which leads to the resistance
of air drainage and prevents the liquids from merging together. As the air leaks out, the gap narrows to a point where
it can no longer maintain the separation of the liquids, eventually leading to their coalescence Couder et al. [2005a].
Intuitively speaking, the dynamics of the thin gap acts as an air cushion transmitting pressure forces between the liquid
volumes and coupling their interfacial dynamics without exhibiting any liquid-liquid contact. During the process, the
air gap’s thickness scale is O(0.1) µm, in comparison to O(1) mm as the droplet size.

This multiphase and multiscale coupling problem underpins many droplets splashing, adhesion, and walking droplet
phenomena Couder et al. [2010], which has drawn extensive attention from experimental and theoretical physicists.
In the literature, the rebound behavior of droplets in the binary collision was first reported by Rayleigh [1899] and
analyzed by Pan et al. [2008], Zhang and Law [2011]. Similar rebound phenomena have also been observed when
droplets bounced on the soap films Gilet and Bush [2009], rigid surfaces Moláček and Bush [2012], Gilet and Bush
[2012] and liquid surfaces Walker [1978]. Among these works, Couder et al. [2005a] reported the role of air film in the
process of droplet bouncing. Further studies show that droplets can interact with liquid in different ways, including
walking Couder et al. [2005b], Moláček and Bush [2013], Harris and Bush [2013], diffraction and interference Couder
and Fort [2006], tunneling across the submerged barrier Eddi et al. [2009], and orbiting Harris and Bush [2014], Oza
et al. [2014a]. Bush [2015] summarized these quantum-style behaviors and connected the hydrodynamics system with
the quantum theories. The quantum analogs also emerge in multi-droplet scenarios, including orbiting pairs Oza et al.
[2014b], Durey and Milewski [2017], promenading pairs Arbelaiz et al. [2018], stable spin lattices Sáenz et al. [2018],
droplet rings Couchman and Bush [2020]. The experimental studies and theoretical models for quantum analogs are
reviewed and summarized in Bush and Oza [2020].

From the perspective of the numerical simulation, thin fluids, such as sheets Ando et al. [2012], Batty et al. [2012],
splashes Thürey et al. [2010], Zhu et al. [2015], bubbles Zheng et al. [2006], Da et al. [2015], Ishida et al. [2017], films
Ishida et al. [2020], Wang et al. [2021], Deng et al. [2022], as well as air gaps discussed above, all exhibit codimensional
geometric features that are challenging to resolve with a traditional volumetric discretization (e.g., a Cartesian grid
or a simplicial mesh). To capture these thin fluid features, researchers invented a broad range of hybrid geometric
representations, such as particles He et al. [2015], Wang et al. [2020], Deng et al. [2022], surface meshes Wojtan et al.
[2010], Zhu et al. [2014], Da et al. [2015], Batty et al. [2012], implicit interfaces Zheng et al. [2006], Saye and Sethian
[2013, 2016], and hybrid particle-grid representation Ando et al. [2012], Chen et al. [2021]. By tracking the geometry
changes and assigning degrees of freedom to the thin structures, these representations enable us to discretize and
effectively solve the physical forces acting on codimensional structures. Moreover, these codimensional representations
allow researchers to simplify the physical models further. For instance, in the context of modeling bouncing droplets,
recent works Li [2016], Hendrix et al. [2016], Chubynsky et al. [2020], Liu and Bothe [2019], Musehane et al. [2018]
employ a reduced lubrication film model to resolve the thin air flow within the gaps by considering the tangential
viscosity as the primary force.

Cut-cell methods (e.g., Batty et al. [2007], Ng et al. [2009], Edwards and Bridson [2014]) provide an effective alternative
for modeling thin features while keeping the uniform grid structure. In contrast to adaptive mesh refinement (AMR)
methods Quan et al. [2009], Chen and Yang [2014, 2020], which recursively refine the grid to achieve sufficient
resolution on thin features, cut-cell methods divide an interface cell with fine geometries and evaluate the flow details
with additional degrees of freedom. Its main advantage over dedicated codimensional modeling is that it offers a
straightforward and intuitive way to integrate the thin features with their surrounding volumetric domains. These
methods are commonly employed in simulating the thin gap flow Qiu et al. [2015], Azevedo et al. [2016], multiphase
fluids Li et al. [2022], fluid-rigid interaction Batty et al. [2007], Ng et al. [2009], Takahashi and Lin [2019], and fluid-
deformable interactions Zarifi and Batty [2017]. E.g., Chen et al. [2020] improves cut-cell methods by incorporating
a pressure reposition strategy, resulting in second-order accuracy and discretization orthogonality. When it comes to
thin-gap flow, Qiu et al. [2015] solved a two-way coupling system between thin gaps and solids, where additional
pressure degrees of freedom were placed on the solid surface. Another category of research strives to capture the
sub-cell flow details by integrating the irregular cell into the Eulerian framework, including Voronoi cells Brochu et al.
[2010], Gibou et al. [2019], tetrahedral cells Batty et al. [2010] and tilted cells Xiao et al. [2020].

We propose a novel two-way coupling approach to simulate the bouncing droplet phenomena based on first principles.
Our algorithm couples fluid volumes, thin air gaps, and interfacial forces in a monolithic manner to model the
aerodynamics-driven fluid contact processes by producing simulations that match real-world experiments in three-
dimensional settings. Our key idea is to discretize the air gap as a set of irregular grid cells and devise a reduced fluid
model to characterize their coupling with the liquid volumes. Our method creates a new set of irregular grid cells
specified with varying thicknesses that can be embedded in a Cartesian grid to characterize the thin air film. This
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Figure 1: Illustration of fluid domains and interfaces. The entire computational domain is divided into three domains.
Ω1 is liquid, Ω2 is the thin air film, and Ω3 is ambient air. Interfaces are denoted using the corresponding subscripts
(Γ12, Γ13, Γ23). We show examples of the domain evolution at t = {0, t1, t2}. Left Top: When t = 0, a droplet Ω1,1 is
released above the liquid bath Ω1,2. The distance between two liquid volumes is more significant than a predefined film
thickness threshold hmax. Left Bottom: When t = t1, the liquid volumes approach each other. The thin air film Ω2 is
identified where the distance between two liquids is less than hmax. Right: When t = t2, the liquid bath deforms due to
the impact of the droplet. In the air film, we define local coordinates on Γ12 ∩ ∂Ω1,2 as a tangential basis vector et and
a normal basis vector en. The local coordinates are parameterized by ξt and ξn. The local thickness h of the air film at
x ∈ Γ12∩∂Ω1,j is approximated as its distance to Ω1,k. ut↑, ut↓ specify the local tangential velocities on the upper and
down sides of air film (both denoted as Γ12). Similarly, un↑, un↓ specify the local normal velocities on the two sides.

novel geometric representation captures the air-liquid interactions within a thin gap with an arbitrary thickness without
employing any adaptivity (which is impractical in this setting due to the drastically different length scales). On top of
this novel geometric discretization, we further build a monolithic system to solve the coupling problem.

We demonstrate the effectiveness of our approach by simulating different bouncing droplet phenomena involving thin
intervening air films. These phenomena include binary collision, bouncing droplets, promenading pairs, and droplet
pinch-off. We also validate the accuracy of our model by comparing the simulation results with experimental videos in
different collision and contact settings. Our method enables three-dimensional simulations of bouncing droplets that
match real-world physics, and it produces visually authentic animations to demonstrate these complicated processes.
We summarize the main contributions of our work as:

• A discrete representation to model aerodynamic thin films with varying thicknesses as the single-layered
irregular cells.

• A cut-cell grid method to couple multiphase fluids with contrasting length scales.

• A monolithic coupling algorithm to solve the lubricated air film and incompressible flow in a single linear
solve.

• A unified simulation framework to simulate bouncing droplets with physical accuracy.

This paper is organized as follows. In Section 2, we present the physical model of the system. Section 3 introduces
the geometrical discretization and defines the differential operators on the cut-cell liquid regions and the single-layer
irregular air cells. We then proceed to build a coupling system to resolve the pressure across the volumetric liquid
regions and the lubricated air film in Section 4. In Section 5, we outline our temporal evolution scheme and introduce
the remaining steps of the algorithm. The results of the numerical validation and the simulation are presented in Section
6. Finally, we conclude our work and discuss the limitations and future directions in Section 7.
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2 Physical Model

2.1 Domain Definition

As shown in Figure 1, we use Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Γ to denote the entire fluid domain. In particular, we use
Ω1 to represent liquid volumes (including both bulks and droplets), Ω2 to represent the thin air film, and Ω3 to
represent ambient air. The liquid domain Ω1 can be further divided into liquid volumes (Ω1,j , j ∈ N∗) (e.g., liquid
bath and bouncing drops) according to their topological connectivities. The thin air film Ω2 is defined as the region
where the distance between two liquid volumes is less than a predefined thickness threshold hmax. Mathematically,
this film can be featured as Ω2 = {x ∈ Ω : x /∈ Ω1 and d(x,Ω1,j) + d(x,Ω1,k) ≤ hmax with j ̸= k}, where
d(x,Ω1,j) = minx̃∈Ω1,j

(|x− x̃|) returns the distance between x and Ω1,j . In addition to Ω, we use Γ to denote the
fluid interface across different domains. We let Γ = Γ12 ∪ Γ23 ∪ Γ13, where Γ12 is the interface between Ω1 and Ω2,
Γ13 = ∂Ω1 \ Γ12 is the interface between liquid and ambient air and Γ23 = ∂Ω2 \ Γ12 is the interface between thin
film and ambient air.

2.2 Volumetric, Multiphase Fluid Model

We model the motion of fluid volumes by solving the multiphase, incompressible Navier–Stokes equations
∂u

∂t
+ u ·∇u = −∇pi

ρi
+

µi

ρi
∇2u+ g,

∇ · u = 0,

x ∈ Ωi, i = 1, 2, 3 (1)

with the interface jump conditions 
[p1] = γκ, x ∈ Γ12 ∪ Γ13,

[p2] = 0, x ∈ Γ23,

[u] = 0, x ∈ Γ12 ∪ Γ13 ∪ Γ23,

(2)

where u is the velocity, g is the gravitational acceleration, pi is the pressure in Ωi, γ is the surface tension coefficient,
and κ is the local mean curvature. [·] denotes the jump condition across an interface.

Solving Equation (1) on a Cartesian grid directly is impractical, due to the vanishingly small domain thickness of the
air gap. Therefore, we exercise simplification in each domain. For the liquid domain Ω1, we drop the viscosity term.
For the ambient air domain Ω3, we assume the air pressure is constant, i.e., p3 = patm, where patm is the default
atmospheric pressure. The model simplification of thin-film flow is nontrivial, which we will discuss next.

2.3 Thin-film Fluid Model

We model the trapped air between fluid volumes as a lubricated thin film of air volume. We will first describe its
geometry model and then present the dynamics equations.

2.3.1 Thin-film geometry

We model trapped air on a thin film with spatially varying thicknesses between fluid volumes. Next, we discuss its
geometry model and parameterization.

For geometry description, we model a thin layer of air as a codimension-1, open surface with varying thickness
embedded in codimension-0 space. The two sides of the surface are the two interfaces between different fluid volumes
in Ω1 and the air film Ω2. The open boundary of the surface (as a codimension-2 rim) is the interface between the air
film Ω2 and the ambient Ω3.

For surface parameterization, we define a local coordinate system at each point of the surface by establishing a set
of orthonormal basis vectors. For example, as shown in Figure 1, in two-dimensional space, we define et and en
according to the local geometry as the tangential and normal basis vectors. A point in the air film can be described
using its coordinates ξt and ξn. These definitions can be naturally extended to three-dimensional cases. For each local
point within the film, we define its local thickness h as the sum of distances to two adjacent liquid volumes.

2.3.2 Thin-film dynamics

Next, we will derive the governing equations for thin-film airflow based on Equation (1). We will first present the
differential form and then the integral form.
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Figure 2: Discretization of liquids and the air film. The liquid domain Ω1 (blue) is divided into several separate liquid
volumes on the Cartesian grid enhanced by cut-cells, with level set ϕ, pressure p1 and velocity u sampled on nodes,
cells, and faces. In the gap between liquid volumes, the air film Ω2 (green) is represented by single-layered irregular
cells and the cut-cell meshes to solve pressure p2.

Differential form Following Smith et al. [2003], Liu and Bothe [2019], we reduce Equation (1) by modeling the
normal and tangent gradients of air pressure in the thin film as

∂p2
∂ξt

= µ2
∂2ut

∂ξ2n
,

∂p2
∂ξn

= 0,

x ∈ Ω2, (3)

with {
[p2] = −γκ, x ∈ Γ12,

[p2] = 0, x ∈ Γ23,
(4)

where ξn and ξt denote the local unit normal and tangent directions, respectively, and un, ut are normal and tangent
components of the air velocity, respectively. The intuition behind Equation (3) is as follows: As the thickness of the air
film decreases, especially when the thickness is much smaller than the characteristic tangent length, the viscosity drag
becomes the dominant force Hamrock et al. [2004], Smith et al. [2003].

Integral form Based on Equation (3), we can further derive the integral form for thin-film flow. Given a small control
volume V in the air film, we define its tangent volume boundary as ∂Vt and its normal volume boundary as ∂Vn ⊆ Γ12.
The pressure within V is governed by the incompressibility constraints in Equation (1), where the sum of the integrated
flux through the boundary is zero. By substituting the lubrication model into the tangent flux on ∂Vt and considering
the pressure-gradient force on the normal boundary ∂Vn, the air-film pressure takes the form

∫
∂Vt

h2

12µ

∂p2
∂ξt

ds+∆t

∫
∂Vn

1

ρ2

∂p2
∂ξn

ds =

∫
∂Vt

ut↑ + ut↓

2
ds+

∫
∂Vn

unds (5)

with the jump conditions on the interfaces

{
[p2] = −γκ, x ∈ Γ12,

[p2] = 0, x ∈ Γ23,
(6)

where ∆t is the time step, ut↑, ut↓ represent the local tangent boundary velocity evaluated at Γ12 ∩ ∂Ω1,k and
Γ12 ∩ ∂Ω1,j respectively (see Figure 1), and un is the local normal boundary velocity. We refer readers to a detailed
derivation in A.
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Figure 3: Discretization of the liquid level set, velocity, and pressure. We split the liquid domain into multiple liquid
regions (Ω1,1,Ω1,2, ...). Left and Right: Each region has its own node-based level set ϕ (black dots) and face-based
velocity field u (solid arrows). The interfaces ∂Ω1 are discretized into the cut-cell mesh (blue segments) by performing
the marching cubes algorithm on level sets. The velocity fields are sampled on grid faces (solid arrows) and extrapolated
(dashed arrows). Middle: When coupling fluid regions with the air film (green), the normal velocities on the cut faces
(dashed arrows) are interpolated from the grid faces. The pressure samples (blue dots) in the cut-cell are repositioned
on the same iso-distance (blue dotted lines) parallel to the interface, following Chen et al. [2020].

3 Discretization

3.1 Sub-cell discretization

We discretize the liquid domain Ω1 as multiple separate liquid volumes on a Cartesian grid with cut cells. Every liquid
volume is tracked in a regular background grid by a separate node-based level set. The cut-cell mesh is rebuilt from the
level set to represent its interface. The interface grid cells are cut into sub-cells. The pressure samples are repositioned
carefully to maintain the orthogonality of the gradient to the cut-cell interface, thus achieving sub-grid accuracy. Based
on the cut-cell meshes, the air film Ω2 is constructed as single-layered irregular cells sandwiched between cut-cell-based
liquid volumes, as shown in Figure 2.

3.1.1 Liquid discretization

We divide the liquid domain Ω1 into separate regions by running a flood-fill algorithm. As shown in Figure 3, we
track each liquid region by creating its own level set function on a regular background grid. We define the interface
∂Ω1 by constructing a cut-cell isocontour mesh using the marching cubes algorithm Lorensen and Cline [1987].
Specifically, to find the intersection between an interface and a grid edge, we check the sign change of the level set
on the grid edge. These intersections, called cut vertices, can be expressed mathematically as x = (1− θ)xl + θxm

with θ = ϕ(xl)/ (ϕ(xl)− ϕ(xm)), where xl and xm are the two endpoints of a grid edge. The cut vertices are then
connected into meshes (segment mesh in 2D or triangle mesh in 3D). The faces of this cut-cell mesh are referred to as
"cut faces" to distinguish them from the regular "grid faces".

As illustrated in Figure 3, the velocity field for each liquid volume is split into orthogonal components and stored
in grid faces. The interface velocities are sampled at the center of the cut faces and interpolated from the grid faces.
Under an inviscid assumption, only the normal component of the interface velocity is preserved. We follow Chen et al.
[2020] to reposition the pressure samples along the iso-surface within the cut-cell for improved sub-grid accuracy and
discretization orthogonality.

3.1.2 Air-film discretization

The air film Ω2 is discretized as a set of single-layered irregular cells seamlessly embedded in the thin gap between
liquid volumes. These air cells are reconstructed every time step based on the cut-cell mesh of the surrounding liquid
volumes. After advection, we construct the cut-cell mesh for liquid volumes and organize the nearby cut faces from
different regions into groups. One air cell is then assigned on each cut face group with the cut-meshes serving as its top
and bottom surface, as shown in Figure 4. The air pressure degrees of freedom are placed at the center of the cut face
groups. More details on the construction of the air film can be found in Section 5.3.
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Figure 4: Discretization of the irregular air film cells in 2D (Left) and 3D (Right). The top and bottom of the air cell
are defined by the cut-cell mesh (green faces). The lateral cell boundaries are discretized as half faces at the rim (grey
faces). un↑ and un↓ are the normal velocity of interfaces at the center of cut faces interpolated from the liquid volumes.
ut↑ and ut↓ are the tangential velocity interfaces evaluated at the cut vertices in 2D or the midpoints of cut edges in 3D.

The air-film thickness varies within a single air cell. For an air cell located between liquid volumes Ω1,j and Ω1,k, given
a vertex x on the cut face in ∂Ω1,j ∩ Γ12, the local thickness h is defined as ϕk(x) where ϕk is the levelset function of
the other liquid volume Ω1,k. The thickness of a cut face is defined as the average of its vertices.

The cut-cell meshes, obtained from the interfaces of liquid volumes, also serve as the top and bottom boundaries of air
cells. The normal velocities on the top and bottom surfaces un↑, un↓ are sampled at the center of these cut faces and
interpolated from the liquid velocity. However, it is challenging to explicitly define the lateral surface of the air cell
using meshes, especially in three-dimensional cases. Instead, we represent the lateral surface with half faces, which are
the faces expanded from the rim of the top and bottom meshes along the local normal direction.

As shown in Figure 4 (Left), for two-dimensional cases, we define half faces on the rim vertices. These half-faces are
half-height lateral faces connected to the top or bottom of air cells and are normal to the local tangent. The area of the
half face is approximated as h↑/2 or h↓/2, where h↑, h↓ are the air film thickness evaluated at the top and bottom cut
vertices. The tangent velocities on the half faces are interpolated from the liquid volumes at the cut vertices on the rim
of the air cell, denoted by ut↑ and ut↓ respectively. The tangent flux between two air cells is approximated at both top
and bottom boundaries as ut↑h↑/2 + ut↓h↓/2. Note that this boundary tangent flux form is only utilized as the first
term on the right-hand side in Equation (5).

In a three-dimensional case, the half faces are defined on the rim edges of the top and bottom meshes, as in Figure 4
(Right). The lateral tangent velocities ut↑, ut↓ are interpolated at the midpoint of the rim edges, and the lateral area of
the half face is lh/2 where l is the length of the rim edge. Unlike the two-dimensional case, there is no one-to-one
mapping between the half faces on the top and bottom boundaries in the three-dimensional case. To obtain the tangent
flux between two air cells, we iterate over the common rim edges between the two cells and sum up the flux of the half
faces on these rim edges. With the lateral interfaces of air cells defined on the half faces based on the top and bottom
boundaries, our method effectively handles the non-manifold film geometry, as shown in Figure 5 (Middle) and Figure
11.

3.2 Discrete differential operators

Next, we will build the discrete differential operators for the liquid volumes, air film, and their interfaces. We provide a
comprehensive explanation of the gradient operator as an example. The divergence and Laplacian operators can be
derived in the same manner.

Gradient operator in liquid In a liquid domain, the gradient is defined as ∇p = (p1,l − p1,m)/dlm between two
liquid cell l, m, with the pressure samples p1,l, p1,m on the iso-surfaces of cells and dlm = |xl − xm|. On the ambient
air interface Γ13, we modify the gradient equation by placing the interfacial pressure sample p1,m at the center of the cut
face and setting it equal to the boundary condition patm. We use S1Ĝ1p1 to represent the matrix form of the pressure
gradient acceleration ∇p/ρ in the liquid domain. p1 stands for the liquid pressure vector. Ĝ1 is a difference matrix

7
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Figure 5: Time evolution of the 2D binary droplet collision (Top row), the 2D trinary droplet collision (Middle row),
and the 2D bouncing droplet (Bottom row). Liquid volumes (blue) are visualized and air films (green) are depicted in
the latter two examples.

with elements 1 and −1, denoting the pressure difference across the grid faces and cut faces of Γ13. S1 is a diagonal
matrix with elements 1/(ρ1dlm), which can be regarded as the inverse of the area density in the control volume of the
face between p1,l and p1,m.

Gradient operator in air film The tangent pressure gradient in the air film is defined on the half faces between
adjacent air pressure degrees of freedom. We sample the pressure p2,l, p2,m at the center of air cells xl, xm and
discretize the gradient ∇p = (p2,l − p2,m) / (|xl − xm|) on the half faces. On the ambient air interface Γ23, we place
the pressure sample of the ambient air p2,m on the half face. And the distance between two samples is defined as
|(xl − xr) · et|, where xr is the position of the rim (rim vertex in 2D, midpoint of rim edge in 3D), et is the tangent
unit vector at xr parallel to ut↑ or ut↓. We use p2 to denote the air film pressure vector and Ĝ2 to denote the tangent
pressure difference operator on the half faces.

Gradient operator on air-liquid interface Across the interface Γ12 between the liquid volumes and the air film, the
acceleration caused by pressure gradient ∇p/ρ is continuous. Disregarding the jump condition, the acceleration on a
cut face between the liquid sample p1,l and the air film sample p2,m is discretized as ∇p/ρ = (p1,l − p2,m)/(ρ1dl +
ρ2hlm/2), where dl is the distance from the liquid pressure sample to the cut face, hlm/2 is the half thickness evaluated
at the cut face, as shown in Figure 3. The acceleration across Γ12 is given as SΓĜΓ(p

T
1 ,p

T
2 )

T , where SΓ is a diagonal
matrix with elements 1/(ρ1dl + ρ2hlm/2) describing the inverse of face density in the control volume of the cut faces.
ĜΓ = (ĜΓ,1, ĜΓ,2) is the difference matrix across the interface. Each row of ĜΓ,1 picks out the adjacent liquid
pressure sample of the cut face and assigns 1. In contrast, each row in ĜΓ,2 assigns −1 for the adjacent air film sample.
Thus, ĜΓ(p

T
1 ,p

T
2 )

T returns a vector where the entries are pressure differences between the liquid and the air film on
the cut faces of Γ12.
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4 Coupling System

Building upon the sub-cell discretization and its discrete differential operators, we propose a two-way coupling method
for solving the pressure monolithically across both the liquid volumes and the air gap. This method couples the inviscid
liquids and the lubricated air film through their cut-cell interface, which enforces the continuous velocity constraint
naturally. We will now introduce the pressure projection equation for liquids and air film and derive their coupling
system.

Liquid domain The pressure projection equation for the liquid is discretized on the liquid cells, which gives

∆t
∑
Fg

Ag

ρ1
∇p1 +∆t

∑
Fn

An

ρ1

∂p1
∂ξn

=
∑
Fg

Agug +
∑
Fn

Anun (7)

where Fg is the set of the grid faces, and the cut faces on the ambient air boundary Γ13, Fn is the set of the cut faces on
the boundary Γ12. ug is the velocity sampled on the faces Fg. un is the normal velocity on the center of the cut faces
Fn. Ag and An denote the area of the corresponding faces.

Using the differential operator in Section 3.2, we rewrite Equation (7) in a matrix form as

∆tĜT
1 A1S1Ĝ1p1 +∆tĜT

Γ,1AΓSΓ(ĜΓ,1p1 + ĜΓ,2p2)

= ĜT
1 A1u1 + ĜT

Γ,1AΓuΓ

(8)

where Ĝ1 is the pressure difference operator on the grid faces in Ω1 and the cut faces on Γ13. ĜΓ,1p1 + ĜΓ,2p2 is the
pressure difference across the liquid-air-film interface Γ12. A1 and AΓ are the diagonal area matrices for the liquid
faces in Ω1 ∪ Γ13 and the cut faces on Γ12, respectively. u1 is the velocity vector for the liquid faces in Ω1 ∪ Γ13 and
uΓ is the velocity vector for the cut faces on Γ12.

Air film Discretizing Equation (5) on a irregular air cell gives

∑
Ft

h2
tAt

12µ2

∂p2
∂ξt

+∆t
∑
Fn

An

ρ2

∂p2
∂ξn

=
∑
Ft

Atut +
∑
Fn

Anun (9)

where Ft is the set of the lateral half faces of the air cell, Fn is the set of the cut faces on its normal boundary in Γ12,
ut is the boundary tangent velocity on the half faces which represents both ut↑ and ut↓, un is the normal velocity on
the center of the cut faces, ht is the thickness evaluated at the rim of the half face, At and An denote the area of the half
faces and the cut faces.

The matrix form of Equation (9) for the air film becomes

1

12µ2
ĜT

2 V2Ĝ2p2 +∆tĜT
Γ,2AΓSΓ(ĜΓ,1p1 + ĜΓ,2p2)

= ĜT
2 A2u2 + ĜT

Γ,2AΓuΓ

(10)

where Ĝ2 is the tangent difference operator mapping the pressure difference onto the half faces, V2 is a diagonal matrix
denoting

(
h2A

)
/d with the thickness h, half face area A and sample distance d evaluated on the half faces between

two air cells. u2 is the tangent velocity vector containing ut↑ and ut↓ on the half faces.

Fully-coupled system Combining Equation (8) and Equation (10) yields the fully-coupled system.

∆tĜT
1 A1S1Ĝ1 +∆tĜT

Γ,1AΓSΓĜΓ,1 ∆tĜT
Γ,1AΓSΓĜΓ,2

∆tĜT
Γ,2AΓSΓĜΓ,1 ∆tĜT

Γ,2AΓSΓĜΓ,2 +
1

12µ2
ĜT

2 V2Ĝ2

 ·
[
p1

p2

]

=

[
ĜT

1 A1u1 + ĜT
Γ,1AΓuΓ

ĜT
2 A2u2 + ĜT

Γ,2AΓuΓ

] (11)
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Algorithm 1 Temporal evolution for a single timestep

1: Advect liquid level sets and velocity fields (Section 5.1)
2: Fix gap geometry to avoid penetration (Section 5.2)
3: Update cell geometry for liquid and air (Section 5.3)
4: Apply body forces
5: Solve implicit surface tension (Section 5.4)
6: Solve the two-way coupling system (Section 4)

This system is symmetric and positive definite and is amenable to high-performance algebraic multi-grid solvers. To
ensure the volume conservation of each fluid region during the simulation, we adopt the divergence control method
proposed in Kim et al. [2007].

5 Time Integration

We summarize our temporal evolution scheme in Algorithm 1. At the beginning of each frame, the node-based level
sets and the velocity fields are advected using the MacCormack method (Section 5.1). After the advection, the gap
geometry is fixed (Section 5.2). Then, we generate the cut cells of the liquid volumes using the marching cube method
and discretize the air film into single-layered irregular cells (Section 5.3). Body forces, including gravity, are applied
explicitly, and the surface tension is solved implicitly on fluid regions (Section 5.4). Finally, our method couples the
pressure degrees of freedom in the liquids and the air film through their interfaces and solves the two-way coupling
system (Section 4).

5.1 Advection

As discussed in Chubynsky et al. [2020], the inertia of the air film can be considered negligible in simulation when the
gaseous kinetic energy is much smaller compared to the Laplace pressure, which holds for all small-scale scenarios in
our paper. Therefore, in this step, we only advect the liquid volumes, including their node-based level sets and velocity
fields, using the MacCormack method Selle et al. [2008].

5.2 Fixing gap geometry

Due to the significant difference in scale of the system, even trivial numerical errors from advection and interpolation
can lead to negative air film thickness. We address the issue by performing Jacobi-style iterations of local correction on
the cut vertices with negative thickness. Given the cut vertex x on the grid edge e and the liquid interface ∂Ω1,j , if it
is found to be inside another liquid volume Ω1,k (ϕk(x) < 0), the local correction update the level set value on both
nodes of e by ϕj+ = (|ϕk(x)|+ hϵ)/2. hϵ is the minimal thickness threshold determined empirically.

5.3 Updating cell geometry

In each time step, we update the cell geometry on both liquid volumes and the air film. For the liquid volumes, we
regenerate the cut-cell mesh and reposition the pressure samples on the iso-surface. Based on the interface mesh of
liquids, irregular air cells are constructed.

Cut cells in liquid volumes For each liquid volume, we perform the marching cube algorithm on its node-based level
set to obtain its cut-cell mesh. We then update the pressure samples on the cut cells, following a method proposed in
Chen et al. [2020], to achieve second-order accuracy and maintain discretization orthogonality on the cut cells.

Irregular cells in the air film The process of the air cell construction is illustrated in Figure 6. Given a pair of liquid
volumes {Ω1,j ,Ω1,k}, the air film is defined as the region where h < hmax. We group the boundary cut faces within
the threshold from two liquid volumes Fj and Fk to construct single-layered air cells.

We first define an iso-contour surface at ϕj − ϕk = 0, which is also the ridge of min(ϕj , ϕk). A set of ridge vertices V
are sampled at the intersections of this ridge surface and the grid edges. Then, an auxiliary graph is initialized with
these ridge vertices V and the cut faces Fj ∪ Fk as the graph nodes. We add edges between each ridge vertex and
its closest cut faces in Fj and Fk , as well as between each cut face and its closest ridge vertex. For each connected
subgraph, we group the cut faces within the subgraph and construct irregular air cells with these cut faces serving as its
boundary mesh. The lateral cell boundary of the newly generated air cell is discretized as the half faces on the rim as
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Figure 6: Illustration of irregular cell construction for the air film. Left: The surface mesh of two liquid volumes Ωj ,Ωk

(blue surface with wireframes) is visualized. First, the ridge vertices (black dots) are sampled at the intersections of grid
edges and the ridge surface (grey surface) where ϕj − ϕk = 0. Middle: Next, We construct a graph with cut faces and
ridge vertices as the graph vertices and initialize its edges based on the closest neighbor search. We then divide the cut
faces into multiple groups (colored mesh) based on the connectivity of the graph. Right: Finally, the air cells (green
cells) are constructed based on the groups of cut faces. For clarity purposes, only a subset of air cells is visualized
in this figure. The top and bottom boundaries of air cells are defined by the cut faces (green faces). The lateral cell
boundaries are defined by the half faces (grey faces) positioned along the edge of the cut faces.

described in Section 3.1. The normal and tangential velocities on its boundary are interpolated from the corresponding
liquid volumes. To determine the center of the air cell, we compute the average position of its vertices and project it
onto the ridge surface.

5.4 Semi-implicit surface tension

Instead of treating surface tension as the interface pressure jump in pressure projection, we solve the semi-implicit
surface tension Zheng et al. [2006] on a narrow band around the interface weighted by a Dirac function for each fluid
region independently. The faces within ϕ(x) < ∆xσ are included in the equation:

(1− 1

ρ
σ∆t2∇2)u∗ = u+

1

ρ
δ(ϕ)σκn⃗∆t (12)

where the Dirac function is

δ(ϕ) =
1 + cos πϕ

∆xδ

2∆xδ
, if ϕ ∈ [−∆xσ,∆xσ] (13)

with the band width ∆xδ = 3∆x. The zero-velocity Dirichlet boundary condition is enforced.

6 Results

6.1 Numerical validations in 2D

To validate our coupled pressure projection, we set up a set of two-dimensional numerical tests.

6.1.1 Air film pressure transmission

In this two-dimensional test, a thin air film is trapped between two liquid volumes in a solid piston with zero gravity, as
illustrated in Figure 7 (Left). A constant pressure is applied to the upper boundary of the liquid, resulting in a high
pressure inside the piston. Due to the incompressibility, the analytical solution should be a constant pressure field
throughout the entire domain. The simulation is conducted in a 1 mm×1 mm domain divided into a 64× 64 grid. The
air film locates at y = 0.5mm with the thickness h = 1 × 10−3 mm. The density of the liquid and the air are ρ1 =
1000 kg/m3, ρ2 = 1kg/m3. A Dirichlet pressure boundary condition of pext =1000Pa is applied to the upper domain
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Figure 7: Numerical validation of pressure transmission across the air film. A series of scenes are set up, where an
air film is confined in a piston filled with liquids, and a constant pressure pext = 1000 mPa is applied on the upper
boundary. The illustration of the scene and the plot of the pressure loss pext − p are shown. Left: A planar air film
trapped between two liquid regions in a piston. The pressure losses evaluated at x = 1.0, 0.84, 0.67, 0.5 mm show that
the external pressure is transmitted throughout the whole domain and results in an identical pressure field. Middle: The
same air film is trapped with its left and right boundaries connected to the ambient air. The same pressure samples are
evaluated, indicating that the thin film is capable of transmitting the majority of pressure even close to the ambient air
boundary. Right: An annular air film is trapped in the liquid, with a constant pressure applied on the upper boundary.
The radial pressure loss distribution and the pressure loss along the annular film are plotted, which match the boundary
pressure condition.

boundary and Neumann pressure boundary conditions are applied to all solid boundaries. The resulting pressure on
vertical lines x = 1.0, 0.84, 0.67, 0.5 mm are identical to the constant external pressure, which is consistent with the
analytical solution.

6.1.2 Air film pressure transmission with the open boundary

We further assess the pressure transmission through the planar air film with its left and right boundaries connected to
the ambient air, similar to the liquid-air-film system in real-world scenes. The configurations are identical to the test in
Section 6.1.1, with the exception of the zero pressure boundary condition being applied at the left and right boundaries
of the air film.

We analyze the pressure loss distribution along four vertical lines at x = 0.0, 0.17, 0.34, 0.5 mm. The results in Figure
7 (Middle) show that although the pressure slightly decreases as it moves down, about 99.99% of the pressure is
successfully transmitted to the lower liquid volume. Therefore, when two liquids collide, the thin air film acts like
an air cushion even if it is connected to the ambient air, and is able to transmit the pressure between them to avoid
coalescence.

We also examine the effect of air film thickness on pressure transmission. Figure 8 shows the pressure loss sampled
along the vertical line at x = 0.5 mm for various thicknesses h = 10−2, 3×10−2, 10−3, 10−4 mm. The results support
the intuitive assumption that as the air film gets thinner, the pressure transmission loss across the air film decreases.
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Figure 8: The pressure transmission in Figure 7 (Middle) with different air film thickness h. The pressure loss along the
vertical lines at x = 0.5 mm is plotted.
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Figure 9: A 2D droplet falls on the liquid bath with different air film height thresholds hmax = 3∆x, 5∆x, 7∆x

6.1.3 Annular air film pressure transmission

in Figure 7 (Right), we demonstrate the ability of our solver to handle a curved air film. An annular air film is trapped
in the liquids, with the same boundary conditions in Section 6.1.1. The film is centered in the domain with the thickness
h = 1× 10−3 mm and radius 0.25mm. the constant pressure is obtained throughout the liquid volume and the air film,
in agreement with the analytic solution.

6.1.4 Droplet impact with different film height threshold

We simulate a two-dimensional droplet impacting a liquid bath to evaluate the effect of hmax, which is used as a
numerical threshold to distinguish the air film from the ambient air. The simulation is initialized in a 1 mm×1 mm
domain with ∆x = 1/64 mm, where the droplet is placed at (0.5, 0.5) with radius r = 0.15 mm and the bath is
initialized with the depth hB = 0.3mm. The surface tension of the liquid is σ = 1.66mN/m and its density is ρ1 =
1000 kg/m3. The air density is ρ2 = 1kg/m3 and its viscosity is µ2 = 18.6 uPas The simulation is run with the
gravity g = −9.8m/s2 and the time step ∆t = 5× 10−4 s.

Figure 9 shows the results with hmax = 3∆x, 5∆x and 7∆x, which validates that the thickness threshold won’t affect
the overall motion of the simulation. We also found that a small threshold hmax = ∆x would lead to instability due
to the potential incorrect geometry in air film initialization, while a too-large threshold would introduce additional
overhead on thick air film where the resulting pressure has a negligible effect on the liquids. Therefore, we use
hmax = 5∆x for the remaining simulations in this work.

6.1.5 Binary droplet collision, trinary droplet collision, bouncing droplet in 2D

In Figure 5 (Top), we simulate the two-dimensional binary collision by emitting two identical spherical droplets with
opposite initial velocities. During the head-on collision, the air film exerts resistance to droplet coalescence, resulting in
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the droplets bouncing apart. We also simulate the trinary collision in Figure 5 (Middle), which demonstrates the ability
of our method to handle non-manifold joints in thin films.

We further simulate the two-dimensional bouncing droplet. The bath oscillates vertically with the period 0.02 s and the
peak acceleration 9.8m/s2. As shown in Figure 5 (Bottom), the droplet is able to bounce over the bath periodically and
stably for a long time, which indicates the stability of our algorithm.

�������� �������� �������� ��������

��������� ��������� ��������� ����������

Figure 10: Time evolution of the binary droplet collision for Case I and II. Top and Bottom: Representative frames of
the rendered images from our simulation and the experimental snapshots from Pan et al. [2008]. Middle: The evolution
of the x-axis positions of two droplets. The regions filled by the light color are the x-axis bounding box of two droplets.
Solid lines denote the x-axis center position of two droplets.

6.2 Binary droplet collision

We follow the experimental study Pan et al. [2008] to set up the experiments of head-on binary tetradecane droplet
collisions. Two tetradecane droplets are initialized in 1 atm ambient air, with the density ρ1 = 762 kg/m3 and the
surface tension coefficient σ = 26.56mN/m. The density of the air film trapped in the gap is ρ2 = 1kg/m3, and the
viscosity is µ2 = 18.6 uPas. The simulation is conducted with the time step ∆t = 5× 10−6 s on a 256× 128× 128
background grid with ∆x = 1/128 mm.

In Case I, the droplets with the radius R = 0.1706mm are placed along the x-axis with the distance between the droplet
centers D0 = 2.5R and emitted in opposite directions with an initial velocity V0 = 0.243m/s. In Case II, the collision
occurs between two droplets with the radius R = 0.1676mm and the initial velocity V0 = 0.496m/s, resulting in
larger deformation. The Weber number is We= 2.27 for Case I and is We= 9.33 for Case II.
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The time series of the droplets are visualized in Figure 10 with our simulation results and the photographs obtained
from the experiments in Pan et al. [2008]. Specifically, four representative frames are compared, including the initial
contact, maximum deformation, rebound, and detachment. Our results, which use the same configurations, agree well
with the experimental results in terms of contact time and droplet deformation.

Figure 11: Time evolution of the trinary droplet collision, where three droplets collide, form a non-manifold gap
between them and subsequently rebound.

6.3 Trinary droplet collision

We further conduct the experiment where three tetradecane droplets collide and rebound. We emit three tetradecane
droplets with radius R = 0.1706mm in 1 atm ambient air, with the density ρ1 = 762 kg/m3, the surface tension
coefficient σ = 26.56mN/m and the initial velocity V0 = 0.5m/s. The density of the air film is ρ2 = 1kg/m3, and
the viscosity is µ2 = 18.6 uPas. We discretize the domain on a 128× 128× 128 background grid with ∆x = 1/128
mm and conduct the simulation with the time step ∆t = 5× 10−6 s.

The simulation result is depicted in Figure 11, showcasing the collision of three identical droplets followed by their
rebound. Note that the air film exhibits a non-manifold joint, demonstrating the ability of our method to handle complex
non-manifold geometry.

t=0.0248s t=0.0456s t=0.0664s t=0.0872s

Figure 12: Time evolution of a droplet bouncing on a vibrating bath in (2, 1) mode. Top: Rendered images of four
representative frames. Bottom: Temporal evolution of the scene. The solid line denotes the movement of the droplet
center, and the dashed line denotes the bath movement. The background image is generated by stitching the successive
simulation frames, where a cropped vertical section represents each frame through the droplet center.

15



arXiv Template A PREPRINT

0.4 0.2 0.0 0.2 0.4
x(mm)

0

20

40

60

80

100

p
p a

tm
(m

Pa
)

t=0.0240s
t=0.0256s
t=0.0282s
t=0.0290s

Figure 13: The air film pressure distribution of the bouncing droplet. Top left: The section view of the domain across the
droplet center at t = 0.0282s. The background grid is colored with the checkerboard pattern to visualize the cells. Top
right: A zoom-in section view of the pressure distribution in the air film. The coordinate system is stretched vertically
to enhance visualization. Bottom: The pressure distribution in the air film during the first impact. The pressures are
sampled on the same section across the droplet center.

6.4 Bouncing droplet on a vibrating bath

We reproduce the bouncing droplet reported in Moláček and Bush [2013] where a silicon oil droplet is released on an
oscillating silicon oil bath. The container is vibrating vertically with the acceleration aB = γsin(2πft), where f is the
frequency, and γ is the peak acceleration. As discussed in Moláček and Bush [2013], different periodic bouncing modes
(m,n) of the droplets are observed. In a (m,n) bouncing mode Gilet and Bush [2009], Moláček and Bush [2013],
the droplet bounces steadily with the period equal to m/n times of the bath vibration period. Intuitively, it means the
droplet contacts the bath n times within m bath oscillating periods.

In our simulation, we release a silicon oil droplet with the undeformed radius R0 = 0.39mm, with surface tension σ =
20.6mN/m and density ρ1 = 949 kg/m3. The bath is shaken vertically with f = 50Hz and γ = 35.28m/s2. The
non-dimensional bath acceleration is Γ = γ/g = 3.6. The simulation is conducted in a 5× 5× 5 mm domain divided
into 2563 grid cells, with the time step ∆t = 2× 10−4 s.

In Figure 12, the vertical sections through the droplet center are rendered and joined together by frame order. The
droplet trajectory and the sinusoidal motion of the liquid surface are plotted on the spatiotemporal image. Our simulation
reproduces the (2, 1) bouncing mode reported in Moláček and Bush [2013], where the droplet bounces once every two
vibration periods of the bath. Whenever the droplet touches the bath, the bath is always in its upward phase of the
period and propels the droplet back.

The pressure distribution in the air film on a cross-section across the droplet center is visualized in Figure 13. At the
beginning of the impact, a narrow pressure peak in the air film arises due to the large relative velocity between the two
liquids. As the droplet deforms, the pressure is distributed over a larger area of the air film. As its upward velocity is
restored, the air film pressure declines until the droplet separates from the bath.

6.5 Promenading pairs of droplets

As reported in the previous work Arbelaiz et al. [2018], when two identical droplets bounce on an oscillating liquid
bath, they exhibit a behavior known as the promenading mode. In this mode, the droplets interact with each other
through the wave field and vibrate laterally along the line across their centers. In our simulation, the silicon oil with the
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Figure 14: The two droplets bounce on the vibrating bath and form the promenading pairs. Left: Rendered result for
Case I, where two droplets bounce and move away from each other. Middle: Rendered result for Case II, where the
droplets move towards each other. Right top: The droplet positions as a function of time t. The colored stripes indicate
the x-axis bounding box of droplets. The solid lines represent the trajectories of the droplet centers. Right bottom: The
droplet distances as a function of time t.

Figure 15: Droplet merging and pinching. A large droplet falls and merges with the bath, which causes a thin liquid
column to form due to the surface tension. The column eventually breaks off and pinches off a smaller droplet bouncing
on the bath.

density ρ1 = 949 kg/m3 and the surface tension σ = 20.6mN/m is used for both droplets and the liquid bath. The
radius of the undeformed droplets is R = 0.8mm, and the bath is vibrated vertically with f = 80Hz, Γ = 0.45 and
γ = 4.41m/s2. The initial distance between the droplet centers is D0 = 4mm in Case I and D0 = 2.4mm in Case II.
To reduce the accumulated error caused by long-term simulation, we simulate the two phases (approaching and leaving
each other) of the promenading mode separately over several vibration periods. The simulation domain is discretized on
a 256× 170× 256 with ∆x = 15/256 mm. The time step is ∆t = 1× 10−4 s.

The simulation results in Figure 14 show that our method is capable of capturing the interaction between two droplets
through the wave field and reproducing two phases of the promenading modes. In Case I, with a small initial droplet
distance, two droplets bounce and move away from each other, while in Case II, with a larger distance, they bounce and
move towards each other. The trajectories of two droplets and their distances are plotted aside.

In this scene, we demonstrate that our algorithm is compatible with multiple liquid volumes. By using separate field
discretization for each liquid volume, minimal modifications are required when applying the algorithm to multiple
liquid volumes. In particular, the air film construction and the region topological change step (splitting and merging)
are executed sequentially for all possible liquid volume pairs in cases with multiple liquids.
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Table 1: Physical parameters in the scenes

Scene |g|(m/s2) ρ1(kg/m3) σ1(mN/m) ρ2(kg/m3) µ2(µPas)
Binary Collision (I & II) − 762 26.56 1 18.6
Trinary Collision − 762 26.56 1 18.6
Bouncing Droplet 9.8 949 20.6 1 18.6
Promenading Pairs (I & II) 9.8 949 20.6 1 18.6
Merging and Pinching 9.8 949 1333.3 1 18.6

Table 2: Simulation configuration and timings

Scene grid resolution ∆x(mm) ∆t(s) Iter/Frame Time/Frame(s) #DoFs(103)
Binary Collision I 256× 128× 128 1/128 5× 10−6 1.18 14.37 96.63
Binary Collision II 256× 128× 128 1/128 5× 10−6 1.18 14.20 91.85
Trinary Collision 128× 128× 128 1/64 5× 10−6 1.00 5.60 19.97
Bouncing Droplet 256× 256× 256 5/256 2× 10−4 3.12 128.02 6750.88
Promenading Pairs I 256× 170× 256 15/256 1× 10−4 1.16 56.96 5446.76
Promenading Pairs II 256× 170× 256 15/256 1× 10−4 1.14 53.28 5448.75
Merging and Pinching 256× 128× 256 15/32 2× 10−4 1.19 27.23 2854.92

6.6 Merging and pinching

As shown in 15, we reproduce the droplet pinch-off with a large droplet (R = 10mm) released on a still bath, similar
to Ding et al. [2012]. When the large droplet touches the liquid bath, it merges with the liquid surface. Following the
merging, a thin liquid column emerges, breaks off, and eventually pinches off a small droplet due to the surface tension,
which is able to sit on the bath for several seconds.

We simulate the scene with a 256× 128× 256 grid with ∆x = 120/256 mm and ∆t = 2× 10−4 s. The density of the
liquid is ρ1 = 949 kg/m3 and the surface tension is σ = 1333.3mN/m.

When the large droplet touches the liquid bath, the negative thickness correction is turned off to mimic the droplet
merging caused by the Van der Waals force. After the droplet merges with the bath, we switch to the semi-implicit
surface tension to avoid the numerical viscosity at the thin liquid neck. The weight wexp = 0.3 is used for the explicit
surface tension part and wimp = 0.7 for the implicit part. After the pinch-off, we switch back to the implicit surface
tension solver.

The topological changes of the liquid volumes, including splitting and merging, are resolved automatically on the
node-based level sets. To detect splitting, we execute the flood fill algorithm on each liquid volume level set. When
multiple connected components are found, the fluid region is split and these connected components are converted into
new fluid regions, each with its own level set and velocity field sampled from the original liquid volume. Merging of
two regions is identified when their level sets overlap. It is detected when a cut vertex on the grid edge of the region
Ω1,j is inside of another region Ω1,k, as indicated by ϕk(x) < 0. The regions are then replaced by a newly merged
region, whose level set is constructed as ϕ = min(ϕj , ϕk). The velocity field of the merged region is copied from the
original regions. Specifically, the velocity on the overlapping face is assigned as the average velocity of two original
regions.

6.7 Performance

The physical parameters of the scenes are summarized in Table 1. All the simulations are performed on a PC with
Intel® Xeon® E5-2620 v4 2.10GHz CPU. We use the AMGPCG solver in AMGCLDemidov [2020] to solve the linear
system in the implicit surface tension and pressure projection steps. The simulation configurations and timings are
listed in Table 2. All the three-dimensional simulations are rendered using Houdini.

7 Summary

This paper proposed a novel computational approach for simulating the bouncing droplet phenomena, with a particular
focus on capturing and solving the air film that plays an essential role in fluid collision and coalescing. Based on the
cut-cell fluids tracked by separate level sets, we discretize the entrained air film as a single layer of irregular cells that
are tightly embedded within the gap formed by adjacent cut-cell fluid interfaces. This allows for efficient handling of
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the complex film geometry without the need for tedious grid refinement. Building upon this discretization, we model
the air film as a thin lubricated layer and couple it with the inviscid incompressible liquid in a monolithic manner. Our
method reproduces a wide range of phenomena, including binary collision, bouncing droplets, promenading pairs, and
droplet pinch-off, demonstrating its ability to capture many critical dynamical features by accurately resolving the
lubricated air flow with liquids.

We identify several limitations and future work directions based on our current approach. First, our system does not
handle viscosity in the fluid domain. One immediate next step is to add viscosity to the liquid model, which has been
proven important in driving droplet walking behaviors Moláček and Bush [2013]. In particular, we plan to focus on the
interfacial viscosity coupling between liquid volumes and the air film. Second, the physical accuracy of our fluid-fluid
coalescence model can be improved. For example, introducing the Van der Waals force into our continuous flow model
is an interesting future direction, which will allow the solver to predict the bouncing and coalescence behaviors based
on multiscale physical principles. Third, due to the computing resolution and boundary conditions, our solver currently
cannot model the interfacial wave dynamics accurately, which limits its capability in handling complex drop-wave
interactions such as the pilot drop dynamics Bush [2015]. In particular, devising a direct numerical solver to reproduce
the full-scale dynamics of a walking droplet and further explore its quantum-mechanics connections still remains
challenging (and alluring). Last, our current model can only handle thin films between fluid volumes. Extending
the proposed cut-cell algorithm to facilitate simulations with more complicated physics, e.g., to capture the air gap
between droplets and elastic thin sheets, filaments, and fluffy surfaces, will open up new opportunities for this model in
accommodating physical simulations in a wider scope.
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A Lubrication model in the Air Film

As two liquid regions approach each other, the thickness of inter-liquid film between them decreases. The dimension of
the film in the normal direction becomes much smaller than its dimension in the tangential direction, and the viscosity
drag becomes the dominant force. Through order analysis, we model the air flow in the gap using the lubrication
theorySmith et al. [2003].

In the lubricated film, the normal and tangent gradient of the air pressure are modeled as
∂p2
∂ξt

= µ2
∂2ut

∂ξ2n
,

∂p2
∂ξn

= 0,

x ∈ Ω2, (14)

with {
[p2] = −γκ, x ∈ Γ12,

[p2] = 0, x ∈ Γ23.
(15)

where ξn and ξt denote the local unit normal and tangent directions, respectively, un, ut are normal and tangent
components of the air velocity, respectively.

To derive the equation that updates the tangential velocity by the pressure gradient, we integrate the first equation in
Equation 14 with respect to the normal direction ξn:

ξn
∂p

∂ξt
= µ

(
∂ut

∂ξn
− ∂ut

∂ξn
|ξn=0

)
(16)

Then we integrate it again on the intervals [0, ξn] and [0, h] (h is the thickness of the air film):

ξ2n
2

∂p

∂ξt
= µ

(
ut(ξn)− ut(0)− ξn

∂ut

∂ξn
|ξn=0

)
h2

2

∂p

∂ξt
= µ

(
ut(h)− ut(0)− h

∂ut

∂ξn
|ξn=0

) (17)
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By combining these two equations to eliminate ∂ut

∂ξn
|ξn=0 and applying the boundary conditions ut(h) = ut↑,ut(0) =

ut↓, the tangential velocity of the air film is given as:

ut(ξn) = −ξn
h− ξn
2µ

∂p

∂ξt
+

h− ξn
h

ut↓ +
ξn
h
ut↑ (18)

The average tangent velocity of the film can be obtained by integrating the tangent velocity from ξn = 0 to ξn = h

hu∗
t =

∫ h

0

ut(ξn)dξn

=

∫ h

0

(
−ξn

h− ξn
2µ

∂p

∂ξt
+

h− ξn
h

ut↓ +
ξn
h
ut↑

)
dξn

=

(
−ξ2nh

4µ

∂p

∂ξt
+

ξ3n
6µ

∂p

∂x
+ ξnut↓ +

ξ2n
h
(ut↑ − ut↓)

)
|h0

=
h3

12µ

∂p

∂ξt
+

h

2
(ut↑ + ut↓)

(19)

Thus the average tangent velocity of the air film is

u∗
t = − h2

12µ

∂p

∂ξt
+

1

2
ut↑ +

1

2
ut↓ (20)

In the normal direction, the velocity on the interface Γ12 is updated by the pressure gradient across the liquid and the air.

u∗
n = un − ∆t

ρ2

∂p2
∂ξn

,x ∈ Γ12 (21)

Given a volume V in the air film with its tangent boundary ∂Vt and normal boundary ∂Vs ⊆ Γ12, the incompressibility
is achieved by summing up the integrated flow through the boundary:∫

∂Vt

u∗
t ds+

∫
∂Vn

u∗
nds = 0 (22)

Substituting Equation (20) and (21) into it yields the reduced model for the air film:

∫
∂Vt

h2

12µ

∂p2
∂ξt

ds+∆t

∫
∂Vn

1

ρ2

∂p2
∂ξn

ds =

∫
∂Vt

ut↑ + ut↓

2
ds+

∫
∂Vn

unds (23)

with {
[p2] = −γκ, x ∈ Γ12,

[p2] = 0, x ∈ Γ23.
(24)
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