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APPENDIX A
MOVING LEAST-SQUARES METHOD

A.1 Approximating the MLS surface

Given the a point x and its local frame R, we split the local
coordinate ξ into the tangential part ξ⊤ and the normal part
ξ⊥. For example, in 2D, the tangential and the normal part
are [ξ1], [ξ2]. In 3D, they are [ξ1, ξ2]

T and [ξ3].
In the MLS method, the local surface is approximated

as h(ξ⊤) = β · b(ξ⊤), where β is the coefficients approxi-
mated by the MLS, b(ξ⊤) returns the 2nd polynomial basis
vector. β = [β1, β2, β3]

T , b(ξ⊤) = [1, ξ1, ξ
2
1 ]

T in 2D and
β = [β1, β2, β3, β4, β5, β6]

T , b(ξ⊤) = [1, ξ1, ξ2, ξ
2
1 , ξ1ξ2, ξ

2
2 ]

T

in 3D.

A.2 Projecting point on the MLS surface

Given a point x with its local coordinate [(ξ⊤)T , ξ⊥]T , its
projected point [(ξ⊤proj)

T , h(ξ⊤proj)]
T on the MLS surface can

be found by solving the minimization problem:

min |ξ⊤ − ξ⊤proj |2 + (ξ⊥ − h(ξ⊤proj))
2 (1)

We solve this problem by the Newton method, where the
gradient and the second derivative of the target function are
obtained based on the polynomial coefficients β.

The gradients are ∇h(ξ⊤) = (β2 + 2β3ξ1) in 2D and
∇h(ξ⊤) = (β2 + 2β4ξ1 + β5ξ2, β3 + 2β6ξ2 + β5ξ1)

T in 3D.
And the second-order derivatives are ∇ ◦ ∇h(ξ⊤) = 2β3 in
2D and ∇ ◦ ∇h(ξ⊤) = (2β4ξ1 + β5ξ2, β3 + 2β6ξ2 + β5ξ1)

T

in 3D where ◦ is the Hadamard product, which means (A ◦
B)ij = (A)ij(B)ij . The normal of the projected point nproj

is spawned orthogonal to the tangential vectors ∇h(ξ⊤).

APPENDIX B
REGIONAL LEVEL SET RECONSTRUCTION

To reconstruct the regional level set ϕi based on the MLSLS
particles Ei, we carry out the following steps.
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Closest Particle Search: Given a grid cell xc, we begin
by searching for its closest particle p ∈ Ei to xc within a
searching radius rCP = rN + 0.5∆x that is slightly wider
than the narrow band. If no neighbor particle is found
within the range, we consider the cell to be located far from
the interface Ωi and skip further processing for that cell.
Then, we construct the local frame Rp based on the normal
vector np on the particle xp.

Local MLS Surface Fitting: Next, we approximate the
local MLS surface at xp according to [16]. We collect the
neighbor particles ENB that lie within a specified support
range rMLS = 2∆x centered at xp. Note that to exclude the
particles that do not belong to the same surface, we only
consider particles q whose normals np satisfy nq · np > 0.
Given the particle xp and its local frame Rp, we use ξ⊤

to represent the local tangential coordinate and ξ⊥ to rep-
resent the normal one. The local surface is approximated
as h(ξ⊤) = β · b(ξ⊤), where β returns the coefficients
fitted by MLS and b(ξ⊤) is the polynomial basis vector (full
expression provided in Appendix A.1). We obtain h(ξ⊤)
by minimizing the MLS objective function on neighbor
particles ENB .

MLS Surface Projection: To obtain the closest point
on the MLS surface, we project the cell center xc onto
the MLS surface as xproj (ξproj as the corresponding lo-
cal coordinate). Given a point xc with its local coordi-
nate [(ξ⊤c )

T , ξ⊥c ]
T , its projected point on the MLS surface

[(ξ⊤proj)
T , h(ξ⊤proj)]

T is found by solving the minimization
problem

min |ξ⊤c − ξ⊤proj |2 + |ξ⊥c − h(ξ⊤proj)|2. (2)

We solve this problem using the Newton method, where the
first- and second-order derivatives of the target function are
obtained based on h(ξ⊤) (see Appendix A.2 for the detailed
derivation).

Projected Point Adjustment: In certain cases, especially
when dealing with sharp features, the projected point may
lie far away from the actual surface (as shown in Figure 5
(right)). To address this, we confine the point in a vicinity
defined by the neighbor particles ENB on the local tangent
space. Following each iteration of the Newton method, we
project all the neighboring particles ξ⊤q onto the vector
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ξ⊤proj − 0 in the local tangent space. The projected point
ξproj is valid when it satisfies

ξ⊤proj < max
q∈ENB

ξ⊤q ·
ξ⊤proj
|ξ⊤proj |

. (3)

Otherwise, we simply truncate the tangential local coor-
dinate ξ⊤proj at the largest projected length and update the
local coordinate in the normal direction as ξ⊥proj = h(ξ⊤proj).

Level Set Value Update: According to the definition of
the level set, the distance from the cell to the surface |xc −
xproj | corresponds to the absolute value of ϕi at cell c. If
this distance is smaller than |xc − xp|, the projected point
is accepted, and we update the level set value as ϕi(xc) =
Sign(np · (xc − xproj))|xc − xproj |. Otherwise, we simply
use the closest particle xp to update the level set value.

APPENDIX C
INTERFACIAL FLOW

C.1 Lagrangian Particles

Definition: Following [4], we introduce an extra set of
Lagrangian particles L. These Lagrangian particles L are
positioned on the region interfaces and advect along the
interfaces, carrying various physical quantities including
mass mL, volume VL, surfactant cL, tangential velocity u⊤

L ,
thickness ηL.

Advection: Since the interfacial flow is decoupled with
the volumetric multiphase flow, we independently advect
Lagrangian particles L with the velocity of both flows. We
begin by advecting them with the normal component of
the grid velocity (uG(xL) · nL)nL. Their normals nL are
dynamically computed as the MLS surface normal, approxi-
mated on MLSLS particles Ei from their closest neighboring
region Ωi. Subsequently, we advect them using their thin
film tangential velocity u⊤

L . We then determine their closest
neighboring region Ωj based on their advected position and
project them onto the MLS surface fitted on MLSLS particles
Ej . This process facilitates Lagrangian particles to adhere to
interfaces while also allowing them to move freely across
interfaces of different regions.

C.2 Interfacial Dynamics Computation

We solve Equation (3) following MELP [4], where La-
grangian particles L and MLSLS particles E collaborate to
simulate the interfacial flow. The procedure is illustrated
below:

E Redistribution: To ensure a uniform sampling of Ei,
we perform a redistribution step on them. We set up a
pseudo-pressure equation

∆t2δ∗∇2
sC = δ̄ − δ∗ (4)

where ∇2
s is the surface Laplacian operator introduced in

[4], C is the pseudo pressure, δ∗ and δ̄ are the current
number density and the average number density on MLSLS
particles Ei, ∆t is a temporal step size. We solve this equa-
tion using the Implicit Incompressible SPH (IISPH) [42] and
update the position of MLSLS particles Ei with ∆t2β∇sC
where β is a step size.

Note that this step serves a distinct purpose compared
to the particle reseeding step (in Section 4.2.3). The particle
reseeding step ensures a sufficient and appropriate sam-
pling of MLSLS particles to represent a smooth surface, but
does not guarantee uniform distribution. In contrast, this
step is specifically implemented to adjust MLSLS particles
towards a uniform distribution, therefore providing an ac-
curate computational scheme of interfacial SPH necessitated
by interfacial flow dynamics.

L2E Transfer: We search for the two closest neighboring
regions Ωi,Ωj for each Lagrangian particle L. Then, we
transfer the mass m, surfactant c, volume V and tangen-
tial momentum p⊤ from L to Ei and Ej separately. The
tangential momentum of L is calculated as p⊤

L = u⊤
LmL.

Additionally, we construct affine momentum p̂⊤ for APIC
and reconstruct the velocity of MLSLS particles as u⊤

E =
(p⊤

E + p̂⊤
E)/mE .

Geometry Computation: After the transfer, we compute
the control area aE , mean curvature HE , and metric tensor
gE on Ei using the MLS method. With aE , the thickness of Ei
is updated as ηE = VE/aE and the surfactant concentration
is updated as ΓE = cE/aE . The mean curvature HE and
metric tensor gE are utilized to construct the codimension-
1 SPH-based differential operators following [4], including
the surface gradient ∇s, surface divergence ∇s·, and surface
Laplacian ∇2

s.
Interfacial Flow Equation Solving: Based on [4], we

solve the following equation of surfactant concentration Γ∗
E

derived from Equation (3) on MLSLS particles E using the
IISPH method.

(
− 1

∆tΓE

)
Γ∗
E +

(
∆t

R̄T

ρ
∇ 1

ηE

)
· ∇sΓ

∗
E +

(
∆t

R̄T

ρ

1

ηE

)
∇2

sΓ
∗
E

= ∇ · u⊤
E − 1

∆t
+∆t

(
∇1

ρ
· g⊤

)
(5)

With Γ∗
E in hand, we update the tangential velocity as

u⊤∗
E = u⊤

E +

(
−2R̄T

ρη∗E
∇sΓ

∗
E +

1

ρ
g⊤

)
∆t (6)

where η∗E is the thickness updated using Equation (3).
E2L Transfer: We transfer the updated tangential veloc-

ity u⊤∗
E and its divergence ∇s · u⊤∗

E from MLSLS particles
Ei and Ej back onto Lagrangian particles L as u∗

Li, u
∗
Lj .

If the two transferred velocity are similar |u∗
Li −

u∗
Lj |/min(|u∗

Li|, |u∗
Lj |) < ϵu, the Lagrangian velocity is

determined as their average uT
L = 0.5(u∗

Li + u∗
Lj). Oth-

erwise, the Lagrangian particle L might be located at a
non-manifold joint, where the interfacial velocities of two
adjacent interfaces are diverse. In this case, we determine
the Lagrangian velocity based on a probabilistic scheme, to
accept one of u∗

Li, u
∗
Lj .

The scheme is derived from the intuition that the flux
at the non-manifold joint is split onto two interfaces. By
assuming the same local thickness at L, the flux on each
interface is proportional to the interfacial velocity magni-
tude. Therefore, we determine the velocity for L with the
probability:
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Fig. 1. The deformation of a 2D circle within a vortex flow field em-
ploying different multi-region tracking methods. We depict the interfaces
tracked by multi-region tracking methods, including the standard level
set method(grey), Voronoi implicit interface method [29](green), multiple
particle level set method [7](blue), and our proposed method (red). In
the lower right corner, a zoom-in view at the 150th frame illustrates
the interfaces (solid lines) and underlying particles (dots) utilized in the
multiple particle level set method(blue) and our proposed method (red).


P (uT

L := u∗
Li) =

u∗
Li

|u∗
Li + u∗

Lj |

P (uT
L := u∗

Lj) =
u∗
Lj

|u∗
Li + u∗

Lj |

. (7)

Finally, we update the thickness ηL for L with the
average velocity divergence, following the third row in
Equation (3).

APPENDIX D
SURFACE TRACKING VALIDATION

We conducted a comparative analysis to validate the ac-
curacy of surface tracking. Our proposed method was
compared to other multi-region tracking methods in the
”vortex-in-a-box” problem [43], where a circle undergoes
stretching under a non-constant vorticity velocity field. The
results obtained from the standard level set method, Voronoi
implicit interface method [29], multiple particle level set
method [7], and our proposed method are presented in
Figure 1. Note that for the latter three methods, both the
interfaces of the inner region (the interior of the circle) and
the outer region (the ambient surroundings) are tracked,
with only the interface from the inner region being visual-
ized. Our method, leveraging the MLSLS particles, exhibits
better tracking accuracy when compared to purely grid-
based methods such as the standard level set method and
Voronoi implicit interface method [29]. In comparison to
the multiple particle level set method [7], although our
method sacrifices some sub-grid details(see the thin tails in
Figure 1), it achieves enhanced smoothness while utilizing
fewer underlying particles. This advantage arises from the
particle placement strategy and the interface approximation
model based on MLS polynomials, as opposed to the model
based on randomly sampled individual particles in particle
level set methods.

Method avg(ϵ) var(ϵ)
MLS Particle 0.0417 0.0047
Level Set 0.0877 0.0309

Fig. 2. The error analysis of curvature estimation. Top: Distribution of
curvature errors ϵ estimated on interfaces using particle MLS method
and level set method. Both MLSLS particles (red dots) on interfaces
and grid edges (grey lines) are depicted. Arrows visualize signed errors,
including those of the particle MLS method (red arrows) and the level
set method (blue arrows). Bottom: The relative average and variance of
the error ϵ using MLS particle-based approximation and level set-based
approximation.

APPENDIX E
CURVATURE ESTIMATION VALIDATION

We conduct a comparative analysis between our MLS
particle-based curvature estimation and the level set-based
approach on a 2D circle. The MLS particles are randomly
sampled and on the interface with the same density used
in the simulation, while the level set values are initialized
as the signed distance to the circle. In the level set-based
approach, we approximate the curvature as ∇ · (∇ϕ/|∇ϕ|)
using the central difference method. We then estimate the
curvature on the interfaces using both methods and an-
alyze the resulting error ϵ by comparing them with the
analytical curvature of the circle. The error distribution,
relative average, and variance are illustrated in Figure 2.
The results indicate that in comparison to the level set-
based method, our MLS approximation achieves superior
accuracy overall. Additionally, it is observed that the level
set-based method exhibits an error distribution sensitive
to orientation, manifesting an increase in error when the
interface is not aligned with the grid edge. In contrast, such
sensitivity is not observed in the MLS-based method.

APPENDIX F
TIME BREAKDOWN

We showcase the detailed time breakdown of some char-
acteristic experiments in Figure 3. In our current imple-
mentation, the ”Volumetric Flow Solving” and ”Velocity
Advection” steps are executed in a highly parallel manner
on the Eulerian grid using CUDA, whereas other steps are
parallelized using OpenMP.

It’s worth noting that the step of particle-grid interac-
tion, including ”Particle-To-Grid Propagation” and ”Grid-
To-Particle Correction”, is notably influenced by the number
of regions. For instance, in the ”Rising Bubbles” scene with



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

0

50

100

150

200

250

Four bubbles Jet on bubbles Rising bubbles Double bubble with
Interfacial Flow

Bubbles on tank
with interfacial flow

Time Breakdown

Particle Advection Particle-Grid Interaction Topological Evolution
Velocity Advection Volumetric Flow Solving Interfacial Flow Solving

Fig. 3. The detailed time breakdown for characteristic scenes.

767 regions, approximately 67% of the total time is dedicated
to the particle-grid interaction. Furthermore, when the inter-
facial flow simulation is involved, both the ”Particle Advec-
tion” and ”Interfacial Flow Solving” steps require additional
time for geometric tracking and dynamic solving.


