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A Moving Least-Squares/Level-Set Particle
Method for Bubble and Foam Simulation

Hui Wang, Zhi Wang, Shulin Hong, Xubo Yang, Bo Zhu†

Abstract—We present a novel particle-grid scheme for simulating bubble and foam flow. At the core of our approach lies a particle
representation that combines the computational nature of moving least-squares particles and particle level-set methods. Specifically,
we assign a dedicated particle system to each individual bubble, enabling accurate tracking of its interface evolution and topological
changes in a foaming fluid system. The particles within each bubble’s particle system serve dual purposes. Firstly, they function as a
surface discretization, allowing for the solution of surfactant flow physics on the bubble’s membrane. Additionally, these particles act as
interface trackers, facilitating the evolution of the bubble’s shape and topology within the multiphase fluid domain. The combination of
particle systems from all bubbles contributes to the generation of an unsigned level-set field, further enhancing the simulation of
coupled multiphase flow dynamics. By seamlessly integrating our particle representation into a multiphase, volumetric flow solver, our
method enables the simulation of a broad range of intricate bubble and foam phenomena. These phenomena exhibit highly dynamic
and complex structural evolution, as well as interfacial flow details.

Index Terms—level set, interface tracking, particle methods, moving least-squares, multiphase fluid, surface tension.

✦

1 INTRODUCTION

Bubbles and foams are ubiquitous in nature, popping with
enchanting colors from soapy water containing surfactants,
forming complex patterns during hygiene practices with
hand sanitizer, and arising through captivating interfacial
wave dynamics. The formation, movement, and eventual
bursting of an individual bubble serve as the foundation for
understanding essential mechanics in numerous fluid pro-
cesses, showcasing captivating and intricate color patterns,
surface deformations, and topological transformations. As
multiple bubbles adhere and cluster together, fascinating
foam structures spontaneously emerge along the fluid inter-
face. These complex structures flow within the fluid body,
influenced by the interplay of surface tension, surfactant
dynamics, and fluid flow.

Despite the inherent connections between bubbles and
foams in terms of their fluid dynamics, they are commonly
treated differently in the world of numerical simulations.
Soap bubble simulations, historically, have been considered
as modeling thin films, and most simulation frameworks
were developed using explicit, Lagrangian meshes [1], [2]
or surface particles [3], [4]. In contrast, foam simulations
are treated as volumetric phenomena, where the Eulerian
grid plays a crucial role in discretizing the fluid domain and
tracking multiple fluid volume fractions [5] or interface rep-
resentations [6], [7], typically in an implicit manner. When
grids and particles are combined in simulating bubble/foam
flow (e.g., as seen in [8]–[10]), the Lagrangian components
commonly serve a complementary role, specifically utilized
to track numerous small drops or bubbles that cannot be
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adequately characterized by the grid cells. Such inhomoge-
neous numerical treatments of bubbles and foams, however,
stemming from the homogeneous physical principles of
surface tension and surfactant dynamics, result in apparent
limitations on both fronts. On one hand, bubble simulations
primarily aim to capture the vibrant intricacies of interfacial
flow, often disregarding the surrounding fluid environment
(such as water or airflow). On the other hand, foam simu-
lations typically focus on addressing fluid volume transport
and topological evolution, paying little attention to the finer
details of interfacial or membrane flow.

In this paper, we have developed a novel particle-grid
scheme for simulating bubble and foam flow. Our approach
differs from previous literature, where particles were pri-
marily used for mass transport or subcellular bubble vol-
ume capturing. Instead, we utilize multiple particle systems
to represent the nonmanifold membranes of foam and track
their topological changes. Our key concept involves assign-
ing a dedicated particle system to each individual bubble,
allowing us to track its interface evolution. The particles
within a bubble’s particle system play dual roles in the
simulation. First, they act as interface trackers, facilitating
the evolution of the bubble’s shape and topology within
the multiphase fluid domain. The combination of particle
systems belonging to all bubbles facilitates the generation
of an unsigned level-set field based on local least-squares
fitting, which further aids in solving the coupled multiphase
flow dynamics between surface tension and fluid incom-
pressibility discretized on a background grid. Second, these
particles serve as a surface discretization, enabling the solu-
tion of flow physics on the bubble’s membrane. Specifically,
these discrete particles are employed to fit a moving least-
squares surface, discretizing the film surface and facilitating
the analysis of surfactant flow details. Due to the combined
mechanisms of moving least-squares fitting and level-set
approximation associated with each particle, we refer to our
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Fig. 1. Simulation of various foam and bubble phenomena using our approach. Far left: Four jets emitting above foam clusters, flowing through the
gaps between them; Middle left: Numerous submerged bubbles rising in an aquarium. We plot the colored meshes of the bubbles on the right.
Middle: Two colliding bubbles undergo oscillations, fostering intricate interfacial flow. We render the Lagrangian particles colored according to their
thickness on the right. Middle right: A submerged bubble ascending and resting on the water surface, coated with a surfactant layer that exhibits
visually captivating patterns. We render the colored Lagrangian particles on the right. Far right: Multiple bubbles interact within a liquid tank, their
interfaces interconnecting to create a complex system featuring multiregional volumetric and interfacial flow. We visualize both the MLSLS particles
and Lagrangian particles on the right.

particles as Moving Least-Squares/Level-Set (MLSLS) Particles.
Our approach distinguishes itself from both the tradi-

tional Eulerian and Lagrangian approaches for bubble and
foam simulation. On one hand, when compared with the
traditional volumetric methods such as multiple level-set
[7], [11] and VOF [5] schemes, our method possesses strong
Lagrangian properties in both geometric and dynamic as-
pects due to the utilization of interface particles. These
particles not only provide discretization stencils for solving
tangential flow physics but also enable robust and accurate
multiple interface tracking capabilities, which proves par-
ticularly advantageous when dealing with scenes involving
numerous non-coalescing bubbles of varying sizes. In this
regard, our approach can be understood as a novel particle
level-set method designed to address multiphase interface
tracking problems, incorporating inherent region identifica-
tion and feature-preserving capabilities.

On the other hand, our approach enhances the expres-
siveness of traditional Lagrangian approaches (e.g., [1]) in
modeling complex and turbulent volumetric flow phenom-
ena. Specifically, our approach seamlessly integrates into
a multiphase, volumetric flow solver (e.g., [7]), allowing
for the simulation of complex bubble and foam behaviors
with intricate topological features while preserving essential
interfacial flow details. Therefore, our approach can also be
understood as a volumetric extension of the moving particle
methods (e.g., [3], [4]) that emerged recently, broadening
their applicability from film-only fluid domains to encom-
pass multiphase volumes. Due to the combination of merits
on both ends, our approach facilitates the simulation of a
wide range of bubble and foam phenomena that were previ-
ously challenging for pure Eulerian or Lagrangian methods.
These phenomena include colliding bubbles, bubble clus-
ters, jets on bubbles, foaming flow, and the full life cycle of
a rising bubble (Figure 1).

We summarize the main contributions as follows:

• A new Lagrangian representation combining compu-
tational merits from both moving least squares and
particle level sets for multiphase interface tracking

• A coupled system to track the topological evolution
and solve multiphase foam physics

• A unified foam simulation framework to simulate
bubble and foam phenomena manifesting complex
tangential flow details and topological film evolution

2 RELATED WORK

Bubble simulation: The simulation of films and bubbles,
which are regarded as the codimensional thin surface
mainly driven by the surface tension, has been an active
area of research in computer graphics. The Lagrangian
structures, including both meshes [1], [2], [12]–[15] and
particles [3], [4], [16], [17] are widely employed in bubble
simulation, due to their inherent capability of representing
and tracking surface geometries. However, with only the
surface geometry, the Lagrangian methods often require
specially designed techniques [18], [19] to handle collision,
penetration, and topological changes, especially when deal-
ing with a large number of interfaces. The dynamics of
bubbles consists of the interfacial flow and the membrane
deformation, which are usually resolved in a decoupled
manner [2], [4]. To address the interfacial flow, researchers
usually reduce the fluid equations onto the surface and
introduce the varying thickness and surfactant concentra-
tion on the surface, which are then resolved based on the
surface parametrization [2], [3], [20], [21]. The membrane
deformation is commonly resolved in a reduced manner
by dropping the velocity inside the bubble and enforc-
ing a global incompressibility constraint. The surface-only
technique [22], [23] further extends the surface structures
to solve the volumetric fluid equations. In this paper, we
enhance the surface meshless particles by incorporating
a background grid, enabling us to efficiently handle the
topological changes and solve the volumetric flow.

Foam simulation: Foams are typically treated as the
interfaces between different subdomains in the multiphase
Eulerian simulation framework [7], [24], forming the non-
coalescing complex topological structures as they advect
with the volumetric velocity. The dynamics of the foam
surfaces is often neglected, due to their significantly smaller
mass compared with the liquid phase. From a dynam-
ics perspective, the presence of the foam interfaces intro-
duces jump conditions of pressure and velocity gradient
[25], [26], which can be easily solved on the background
grid in the multiphase Eulerian framework. From the ge-
ometric perspective, the interactions between foams and
the volumetric liquid form intricate geometries, especially
in turbulent foaming liquid flow. To track multiple non-
manifold interfaces, researchers proposed various methods
to define the implicit surface representation on the grid,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

Ω1

Ω2
Ω3

Ω4 Ω5

Ω1

Ω5

𝒏

𝒆𝟏

𝒆𝟐

𝜂

Fig. 2. Illustration of fluid domains. Left: The entire domain is divided
into multiple volumetric regions Ωi and the their interfaces ∂Ωi. Right:
The interfaces are treated as thin films, characterized by the local frame
R = [e1,n] in 2D (R = [e1, e2,n] in 3D) and thickness η, where the
interfacial flow is solved.

including regional level set [6], [11], [27], particle level sets
[7], multiple marker level set [28], Voronoi implicit interfaces
method (VIIM) [12], [29], VOF [5]. By utilizing these implicit
representations on the grid, we can effectively handle the
evolving topology during the simulation and maintain sta-
bility during drastic topological changes including splitting,
merging, and self-collision. To track the foam even in chaotic
flow, where the surface tension plays a less important role,
researchers employ techniques such as FLIP [26], [30], [31]
and the lattice Boltzmann method [32], [33]. In addition,
there are also grid-based approaches that specifically focus
on sub-grid detail of foams, which exhibit the continuum
property [34], the particulate property [9], [35], [36] and
the whitewater effect [10], where Lagrangian structures are
incorporated in the Eulerian framework to track the small-
scale features in the simulation. By integrating Lagrangian
foam particles, Patkar et al. [8] achieve a multi-scale foam
simulation.

3 PHYSICAL MODEL

In this section, we present the physical model we employed
to simulate the multiphase bubble and foam flow systems.

3.1 Domain Definition

Volumetric Regions: As depicted in Figure 2 (Left), we
divide the entire domain Ω into separate volumetric regions.
Each region Ωi is occupied by a uniform single-phase fluid
and identified by a unique index number i. We classify the
regions based on the specific phase of fluid they contain,
resulting in liquid regions ΩL (e.g., droplet, liquid bulk) and
gas regions ΩG (e.g., foam, bubble, ambient air).

Thin Film: We define the thin film geometry on the
interface in the following two situations: (1) the interface
between two gas regions, where a thin fluid layer is confined
between two air-liquid interfaces; (2) the interface between
a gas region and a liquid region, which is covered by a thin
liquid layer, e.g. the surfactant spreading over a water tank.
In both cases, the film thickness (10−7m) is significantly
smaller than its characteristic length (10−2m), allowing us
to treat the local geometry as thin film lamellae.

As shown in Figure 2 (Right), we define the thin film
geometry on the interfaces. To determine the continuous
surface normal, we examine the surface from one specific
region and use the outwards direction n as the normal
vector. Then we spawn the local frames R = [e1, e2,n]
(R = [e1,n] in 2D) from the normal, where e1 and e2 (e1
in 2D) are the tangential basis. The thickness of the film η is
defined along the normal.

3.2 Volumetric Flow Model
We solve the inviscid volumetric multiphase flow in both
liquid regions and gas regions based on the incompressible
Euler equations


∂u

∂t
+ u ·∇u = −∇p

ρi
+ g,

∇ · u = 0,

x ∈ Ωi, i ∈ [1, nΩ] (1)

with the interface jump conditions
[p] = γκ, x ∈ ∂Ωi ∩ ∂Ωj and Ωi ∈ ΩL and Ωj ∈ ΩG,

[p] = 2γκ, x ∈ ∂Ωi ∩ ∂Ωj and Ωi ∈ ΩG and Ωj ∈ ΩG,

[u] = 0, x ∈ ∂Ω,
(2)

where u is the velocity, p is the pressure, g is the gravity,
ρi is density of the corresponding volume, γ is the sur-
face tension coefficient, and κ is the surface curvature on
the gas-liquid interfaces. Equation (1) is derived from the
Navier-Stokes equations by dropping the viscosity term and
accounting for variations in fluid density across different
regions. In Equation (2), the first row represents the pressure
jump caused by the surface tension across the interface
between the liquid and gas region. The second row corre-
sponds to the interface between two non-coalescence gas
regions. Since there are two gas-liquid interfaces between
these gas regions, we account for the surface tension contri-
bution twice in the pressure jump. The third row is the zero
Dirichlet boundary condition of the velocity at the domain
boundary.

3.3 Interfacial Flow Model
On a thin film or a liquid surface, we assume that the tan-
gential material transport is independent of the volumetric
multiphase flow. Thus, we decouple the tangential surface
of the film from the volumetric dynamics and follow [4] to
model the tangential flow as:

Du⊤

Dt
= −2R̄T

ρη
∇sΓ +

1

ρ
g⊤

DΓ

Dt
= −Γ∇s · u

Dη

Dt
= −η∇s · u

x ∈ ∂Ω (3)

where u⊤ is the tangential velocity of the interface, R̄ is the
gas constant, T is the temperature, η is the thickness, Γ is the
surfactant concentration. g⊤ is the component of the gravity
along the surface. The first row denotes the tangential force
acting on the velocity, including the gravity and the force
caused by the tangential gradient of surface tension. The fol-
lowing two rows correspond to the conservation equations
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Fig. 3. The illustration of our MLSLS particle system. Our MLSLS par-
ticle system includes two major components: a set of MLSLS particles
E and a background grid G. (1) The particles E are divided into multiple
groups Ei to track the surface of each region Ωi. (2) On the background
grid G, we represent the implicit surface with a indicator map χG and a
global level set ϕG. A velocity field uG is stored on the staggered grid.
An extra set of Lagrangian particles L is introduced on the interface to
track the interfacial flow across different regions.

for the surfactant concentration Γ and the film thickness η,
respectively.

Note that this independent interfacial flow model relies
on the assumption of a free-slip condition between the
interfacial and volumetric flows. Under this assumption,
the coupling of tangential velocities on the interfaces is
neglected. While this assumption yields visually-appealing
results in our experiments, it may introduce artifacts in sce-
narios characterized by widely varying tangential velocities
across the interfaces, such as blowing bubbles.

4 GEOMETRIC REPRESENTATION

The interface geometry we aim to represent is depicted
in Figure 3 as the solid curves. It includes two types of
boundaries: (1) the boundaries that separate fluid and air
regions, such as the free surface between a liquid volume
and the ambient air, or the surface of an underwater bub-
ble, and (2) the liquid films between adjacent air regions,
such as the membranes between neighboring bubbles. To
conceptualize these boundaries, we can consider each piece
as the joining of two boundaries from its adjacent regions.
The interface geometry can then be described as the union of
the boundaries of all regions in the domain, assuming these
boundaries have negligible thickness. Motivated by this
concept, we have developed a novel hybrid particle-grid
structure to represent the interfaces of bubbles and foam in
a multiphase flow system. In the following sections, we will
introduce the discretization of this structure and outline the
procedures for updating its geometry and topology. We refer
readers to Table 1 for the relevant symbols.

4.1 Interface Discretization

4.1.1 MLSLS Particles
The fundamental concept of our particle representation is
to allocate a dedicated particle system to track each re-
gion’s boundary (on the interior side). In particular, each
volumetric region Ωi is associated with a distinct collection
of particles Ei. For example, as depicted in Figure 3, we

Symbol Meaning
Ωi Region with index i
∂Ωi Interface of Ωi

(·)i/j Attributes related to Ωi or Ωj

E MLSLS particles
Ei MLSLS particles of a region Ωi

R Local frame
(·)E Attributes related to E
G Background grid
χG Indicator map on G
ϕG Global level set on G
uG Velocity field on G
ϕi Temporary narrow band level set of Ωi

L Extra Lagrangian particles on interface
(·)L Attributes related to L
(·)c Values related to a grid cell c
(·)p/q Values related to a particle p or q
(·)⊤/⊥ Tangential or normal component of a vector

TABLE 1
A list of symbols and expressions in our paper.

employ five particle systems to trace the boundaries of five
distinct regions within the domain: one for water, one for
ambient air, one for an underwater bubble, and two for
floating bubbles. The motion of particles representing a
specific region’s boundary reflects the motion of that region.
It is ensured that the boundaries of different regions never
intersect with each other. This concept draws inspiration
from [4], where each bubble was represented by a separate
set of SPH particles, and their interactions were governed
by the localized interactions among particles from different
sets.

The particles play a dual role in our geometric repre-
sentation. First, they provide discrete moving least-squares
stencils to differentiate the local surface. By applying the
MLS method to these particles, we can fit a polynomial that
describes the local geometry of the surface. This polynomial
representation conveniently allows us to calculate various
geometric properties, such as signed distance, mean curva-
ture, and metric tensor, directly from local particles. These
geometric properties are particularly useful for simulating
the details of interfacial flow (see Section 5.2). Second, these
particles serve as interface trackers, capturing the evolution
of the level set associated with the region they belong
to. In each time frame, we can conveniently extend the
particles’ local MLS approximation to a volumetric distance
field, which can be further used to accommodate the vol-
umetric multiphase flow solver in the global domain (see
Section 5.1). Given their dual roles in moving least-squares
and level-set tracking, we refer to these particles as Moving
Least-Squares/Level-Set (MLSLS) particles.

4.1.2 Background Grid
In addition to the MLSLS particles, we also leverage a
background staggered grid structure to store the volumet-
ric fields extended from these particles. In particular, we
construct two fields on the background grid, including an
indicator map χG and a global level set ϕG, to represent the
domain division and the implicit interface among a set of
bubbles and their surrounding liquid and air mediums. The
indicator map χG is a field of integer values, assigning a re-
gion index to each cell, indicating its corresponding region.
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Fig. 4. The process of geometric evolution of our MLSLS particles system. (1) Advect MLSLS particles E using the velocity field uG; (2) Reconstruct
the level-set-based implicit interfaces on the grid G using local MLS surfaces approximated on E ; (3) Correct particles E based on the grid G to
achieve consistent interface representation between grid and particle and a optimal distribution. (4) Handle topological changes between regions
including splitting and merging.

Without loss of generality, we assume that the global level
set ϕG exclusively comprises negative values, symbolizing
the negative distance from the cell to its nearest interface.
Given a grid cell xc lying within a region Ωi, its indicator
value would be χG(xc) = i and ϕG(xc) is the negative
distance to the interface of ∂Ωi. Besides, we store velocities
uG on the staggered grid faces to specify fluid flow in the
global domain.

Last, we want to emphasize that both the particle
systems and the background grid are used to represent
the same interface geometry, with different computational
focuses. While the particle systems provide a local and
codimensional representation of the interface through mov-
ing least-squares, the background grid offers a global and
volumetric discretization via advancing the level-set field.
These two components complement each other and together
enable us to accurately capture and simulate the complex
behavior of the geometric and topological evolution in a
multiphase flow system.

4.2 Geometric Evolution
One of the fundamental challenges in our hybrid particle-
grid representation is determining how the Lagrangian
and Eulerian components co-evolve and influence each
other. This section presents our geometric evolution scheme,
which facilitates updating the particles and the grid. The
core idea of our scheme revolves around a bi-directional cali-
bration process. First, we propagate the local Moving Least-
Squares (MLS) approximation of the interface geometry
from the particles to the entire background grid, generating
an unsigned distance field that spans the entire domain.
Second, we leverage this distance field to redistribute the
particles on the surface, ensuring an optimal distribution of
particles without accumulation or sparsity.

This bi-directional calibration process consists of four
stages, including particle advection, particle-to-grid propaga-
tion, grid-to-particle correction, and topological evolution, as
depicted in Figure 4. (1) We begin with the particle advection
stage, where MLSLS particles E are advected using the
velocity field uG. (2) In the particle-to-grid propagation stage,
we extend the interface defined by local MLS surfaces on
the updated MLSLS particles E to the grid G, which is done
by reconstructing a set of regional level sets Ωi based on
the MLS surfaces approximated on MLSLS particles Ei and

using them to reconstruct the implicit interface on the global
level set ϕG and the indicator map χG. (3) In the grid-to-
particle correction stage, we calibrate particles E based on
the implicit interface defined on the G, which is done by
projecting MLSLS particles onto the implicit interface and
optimizing their distribution through particle reseeding on
the implicit interface. (4) In the topological evolution stage, we
detect the splitting and merging events based on grid G and
address the region update on particles E and grid G. In the
upcoming sections, we will provide detailed explanations of
each stage and its implementation.

4.2.1 Particles Advection
For each region Ωi, we advect the positions of its MLSLS
particles Ei using the background velocity field uG. In addi-
tion, we also update each particle’s normal vector following
Ianniello and Di Mascio [37] as Dn/Dt = −∇u·n. This pre-
dicted normal is utilized in the particle-to-grid propagation
stage to generate the local frame required for MLS fitting. It
will be replaced by the normal derived from the grid G in
the grid-to-particle correction step;

4.2.2 Particle-To-Grid Propagation
In this stage, we extend the local MLS surface approximated
on particles E to reconstruct an implicit interface represen-
tation on the grid G. In particular, we will update the global
level-set field ϕG and the indicator field χG on the grid
based on the particle interfaces. To realize this goal, we
first rebuild a regional level set ϕi within a narrow band
for each region Ωi based on the MLS surfaces approximated
on particles Ei. Then, we reconstruct the implicit interface
by combining all regional level sets ϕi to update the global
level set ϕG and the indicator map χG.

Regional Level Set Reconstruction: For each region, we
rebuild a regional level set ϕi using MLSLS particles Ei
within a narrow band of width rN = 4∆x. We illustrate
the algorithm in Algorithm 1. As shown in Figure 5, given a
cell xc, this process begins by identifying its closest particle
xp and its normal np in Ei within a radius rCP . Then,
we construct a local MLS surface based on neighboring
particles ENB at xp. To ensure that only relevant particles
contributing to the surface are considered, we selectively
include particles q in ENB whose normals nq satisfying
np ·nq > 0. Next, we employ the Newton method to project
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Algorithm 1 Reconstruct the regional level set ϕi using
MLSLS particles Ei

1: for each cell xc do
2: Find its closest particle p ∈ Ei at xp with its normal

np

3: if |xc − xp| > rCP then
4: Continue
5: end if
6: Fit local MLS surface at xp with neighbors ENB

7: Project xc onto the MLS surface as xproj

8: Adjust xproj if it is distant from the MLS surface
9: Compute the normal nproj at xproj on the MLS sur-

face
10: if |xc − xproj | < |xc − xp| then
11: ϕi(xc)← Sign(np · (xc − xproj)) · |xc − xproj |
12: else
13: ϕi(xc)← Sign(np · (xc − xp)) · |xc − xp|
14: end if
15: end for

xc onto the surface, obtaining the projected point xproj . Its
normal nproj is derived based on the MLS surface. In certain
cases involving sharp features, the projected point may be
distant from the actual surface. To address this, we apply
an adjustment to constrain the projected point based on
the neighboring particles. Finally, the level set value ϕi(xc)
is updated based on the distance between the cell xc and
the projected point xproj . Further details can be found in
Appendix B.

Global Level Set reconstruction: In this step, we work on
the grid to correct the level sets, ensuring seamless domain
division. Then we build the global level set ϕG and the
indicator map χG based on the updated level sets.

We follow [7] to correct the regional level sets ϕi to avoid
vacuum or overlaps between regions. Specifically, if a cell
xc is covered by multiple regional level sets within their
narrow bands, we identify two level sets with the minimal
value, denoted as ϕi and ϕj (ϕi(xc) < ϕj(xc) < ∀kϕk(xc))
and correct these regional level sets by subtracting their
mean value 0.5 (ϕi(xc) + ϕj(xc)) at xc. We then recon-
struct the global level set by taking the minimum value
among the regional level sets within the narrow band as
ϕG(xc) = mini(ϕi(xc)).

With the CFL condition, we ensure that the particle
displacements are always smaller than half the width of the
narrow band rN within a single time step. This ensures that
the interfaces only exist within the narrow band after the
advection and allows us to update the indicator map only
in the narrow band using χG(xc) = argmini(ϕi(xc)). To
obtain the global level set ϕG throughout the entire domain,
we perform the fast marching algorithm within the interior
of each region.

4.2.3 Grid-To-Particle Correction
To ensure geometric consistency between the particle sam-
pled interfaces represented by particles E and the implicit
interfaces defined on the grid G, a two-step grid-to-particle
correction is performed, including particle projection and
particle reseeding. The particle projection ensures that all
particles lie on the zero-contour of the regional level set,
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Fig. 5. From a cell xc (square with a black dot), the regional level set
value ϕi(xc) is reconstructed as follows: (1) Search the closest point
xp (blue line); (2) Fit the local MLS surface (grey line) with particle
neighbors q ∈ ENB (dark blue dots); (3) Project xc onto the MLS surface
as xproj (red dot); (4) Adjust the outside projected point xproj (black
arrow in the right subfigure); (5) Update the level set value ϕi(xc).

while the particle reseeding aim to achieve an optimal
sampling on the interface.

Particle Projection: In this step, we calibrate the particles
Ei to align with the interface of the regional level set ϕi.
We first perform the fast marching algorithm on corrected
regional level sets ϕi within the narrow band. Then, MLSLS
particles p ∈ Ei are projected onto zero-contours of ϕi using

xp = xp − ϕi(xp) ·
∇ϕi(xp)

|∇ϕi(xp)|
. (4)

We also update particle normals as the normalized gra-
dient of the regional level sets ϕi.

Particle Reseeding: To maintain an optimal particle dis-
tribution and density of the surface, we implement a particle
reseeding algorithm for MLSLS particles Ei in the region
Ωi. In the insertion stage, we employ a FLIP-like algorithm.
For each region Ωi, we check the cells close to the interface
with |ϕi(xc)| < ∆x. If the particle count within the cell
is below a predefined threshold nseed/2, we remove the
existing particles in that cell, randomly generate and insert
nseed particles, and project them onto the interface using
ϕi. In practice, we use nseed = 8 and 16 in 2D and 3D,
respectively. In the removal stage, when two particles are in
close proximity (|xp−xq| < rRM ), we remove the one with
a larger number density (see in Appendix C.2), as it resides
in a denser neighborhood.

4.2.4 Topological Evolution
Our particle-grid representation supports two types of topo-
logical change to simulate bubble split and merge. Given
the grid-based representation’s ability to handle topological
changes effectively, we begin by detecting splitting and
merging on the indicator map χG. Then, we update the
grid representation accordingly and calibrate the particles
to align with the updated interface on the grid.

Splitting: In the splitting step, we first perform the flood
fill algorithm on the indicator map χG for each region in par-
allel to identify any potential splitting. If multiple connected
volumes are detected in region Ωi, we assign them as new
separate regions. We then update the indicator map χG by
filling the cells of Ωi with the new region indices. The global
level set ϕ remains unchanged during the splitting process.
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Fig. 6. Massive bubbles generated underwater, rising and clustering on the liquid surface.

The MLSLS particles Ei are reassigned to their nearest new
region and projected onto their interfaces, which is obtained
by extracting the corresponding connected part from the
regional level set ϕi and performing a re-marching within
the narrow band.

Merging: The merging of regions happens when two
adjacent regions Ωi, Ωj (i < j) contain the same phase
of liquid, which is identified on the indicator map χG.
We select the smaller index i as the merged index and
update the indicator map χG by replacing j with i. In
the merged region, we merge two level sets as ϕij(x) =
min(ϕi(x), ϕj(x)) and then update the global level set ϕG as
ϕG(x) = ϕij(x) where χG(x) = i. To remove the particles
on the interface between two merged regions ∂Ωi∩∂Ωj , we
perform neighbor searches on the Ei and Ej with the radius
rMRG = 0.75∆x. Any particles that detect neighboring
particles from the other region are then removed.

5 SIMULATION FRAMEWORK

After presenting the geometry representation and evolution
of our MLSLS particle system, we will now demonstrate its
integration into the simulation framework.

As discussed in Section 3, we solve the volumetric
multiphase flow and the interfacial flow separately. Within
our grid-particle approach, we can seamlessly integrate our
method into the existing simulation framework for both
volumetric flow and interfacial flow. For the multiphase
flow, which is discussed in Section 3.2, we discretized it
on the background grid G following the traditional Eule-
rian framework. With the domain division and the implicit
interface defined on the background grid G, we solve a
pressure projection derived from Equation (1). For the in-
terfacial flow, we utilize Equation (3) to solve the tangential
dynamics of the surfactants on MLSLS particles Ei, along
with a set of auxiliary Lagrangian particles L. We tackle the
tangential flow in a pure particle approach following [4],
where the interface is approximated and differentiated on
MLSLS particles Ei and flow tracked by Lagrangian particles
L.

We would like to emphasize our strategy of solving
the surface tension in our method. We decouple it into its

normal and tangential components, addressing them inde-
pendently in two distinct flows. The normal component of
the surface tension, contributing to the bubble deformation
and liquid-bubble interaction, is typically incorporated into
the volumetric Eulerian fluid solver as a pressure jump on
grid faces. In the volumetric multiphase flow, we adopt
a similar strategy. We enforce the normal surface tension
on the grid face and approximate the curvature using the
MLS method on Eulerian particles E . In the interfacial flow,
the tangential surface tension, as presented in Equation (3),
is modeled as a tangential acceleration resulting from the
surface gradient of the surfactant concentration within the
thin film on the interface. We follow [4] to resolve the
surface tension on MLSLS particles E with a set of SPH-
based surface operators. Next, we will explore the specific
details of the two flows.

5.1 Volumetric Multiphase Flow

Following the physical model discussed in Section 3.2,
we solve the dynamics of the volumetric multiphase flow
throughout the entire domain using the conventional Eu-
lerian framework. With the discretization on the grid G,
we effectively solve the physical forces in Equation (1),
including gravity, pressure, and surface tension. The gravity
is explicitly applied to all grid faces. The pressure is resolved
through the divergence-free projection, which considers dis-
continuous density across different regions, to achieve a
divergence-free velocity field. To account for surface tension,
we utilize MLSLS particles to approximate it and incorpo-
rate it into the pressure projection as a jump condition on
the grid faces of the interfaces. Next, we will discuss the
details of the divergence-free projection and surface tension
components.

Divergence-Free Projection: We solve the pressure pro-
jection equation derived from Equation (1) to enforce the
incompressibility across the entire domainu∗

G = uG −
∆t

ρ
∇p+ δs(x)

∆t

ρ
kγκ

∇ · u∗
G = 0

(5)
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Fig. 7. When two bubbles collide, the interfacial flow across their interfaces results in a complex pattern, as depicted in the photo-realistic rendering.
Additionally, a particle view is provided with colored Lagrangian particles L (left), and the MLSLS particles E of each region(right).

where ∆t is the time step, u∗
G is the velocity field after

pressure projection, p is the pressure, ρ is the fluid density
at the grid faces, γ is the surface tension coefficient, κ is
the surface curvature, and δs(x) is a Dirac function on the
interface. k denotes the number of liquid-gas interfaces for
surface tension. As discussed in Section 3.2, k = 1 when
the interface is between liquid and gas regions and k = 2
when the interface is between two gas regions. We adopt
the divergence control method proposed in [27] to ensure
volume conservation.

To address the discontinuous distribution of the physical
coefficients, e.g., fluid density, we follow [7] to model the
mixed coefficient across the interface. We identify a grid
face xc+1/2 as the interface when its neighboring cells are in
different regions χG(xc) ̸= χG(xc+1). Suppose χG(xc) = i,
χG(xc+1) = j, we define θ = ϕG(xc)/(ϕG(xc)+ϕG(xc+1))
to represent the volume fraction of region j in the control
volume of face xc+1/2. The interface position is then inter-
polated as xθ = (1 − θ)xc + θxc+1. The mixed density on
the face is computed as (1 − θ)ρi + θρj , where ρi and ρj
represent the densities of regions i and j.

Surface Tension: We incorporate the surface tension into
the solver as pressure jumps and approximate the curvature
based on MLSLS particles from adjacent regions on both
sides of the interface. Suppose xθ lies between Ωi and Ωj ,
we estimate two curvature κi, κj from both sides of the
interface by performing the MLS approximation on Ei and
Ej at xθ . The curvature at xθ is then determined as the
average of κi and κj . By enforcing the surface tension on the
grid face and considering the curvature from both sides of
the interfacial grid face, our method effectively handles the
non-manifold joint where multiple interfaces are involved,

such as triplet joints between bubbles.
The surface tension coefficient is determined as γ = γ0−

R̄TΓ, where Γ represents the surfactant concentration on
MLSLS particles E , which we will discuss in Appendix C.2.
For simulations without the interfacial flow, we simply use
the default coefficient γ0.

5.2 Interfacial Flow

We follow the physical model in Section 3.3 to solve the
interfacial flow on MLSLS particles Ei, which involving
the evolution of surfactant concentration Γ and thin film
thickness η on the interface. We discretize the model on
our MLSLS particles, following the particle-only approach
proposed in [4], where we approximate the MLS surface
and build SPH-based surface differential operators on the
MLS particles. The tangential dynamics is then solved on
MLSLS particles Ei iteratively using the IISPH method.
Additionally, we introduce an additional set of particles to
track the surfactant distribution on the interface and transfer
the quantities to MLSLS particles for solving.

MLSLS Discretization: By reformulating and discretiz-
ing Equation (3), we obtain an implicit equation of the
interfacial dynamics of surfactant

(
− 1

∆tΓ

)
Γ∗ +

(
∆t

R̄T

ρ
∇1

η

)
· ∇sΓ

∗ +

(
∆t

R̄T

ρ

1

η

)
∇2

sΓ
∗

= ∇ · u⊤ − 1

∆t
+∆t

(
∇1

ρ
· g⊤

)
(6)

and a tangential velocity correction equation

ℇ Redistribution1 𝓛2ℇ Transfer2 ℇ Geometry Computation3 Dynamics Computation4 ℇ2𝓛 Transfer5

Fig. 8. The process of interfacial flow simulation. (1) Redistribute MLSLS particles E within each region. (2) Transfer physical quantities from
Lagrangian particles L to MLSLS particles E in their closest two regions. (3) Compute interfacial geometry. (4) Solve tangential dynamics within
each region separately. (5) Transfer quantities from MLSLS particles E to Lagrangian particles L.
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Fig. 9. The life-cycle of a bubble. In a liquid tank covered by a thin layer of the surfactant, a submerged bubble ascends, settles on the surface, and
eventually ruptures. This process highlights the intricate coupling between the volumetric and surface dynamics in our method. Top: Sectional view
showcasing the underlying Lagrangian particles L (upper left corner), MLSLS particles Ei (upper right corner), and bubble mesh rebuilt on the grid
G. The MLSLS particles Ei of the ambient air, bubble, and liquid bulk are colored in blue, purple, and green, respectively. Middle: Close-up view of
the photo-realistic rendering (left) and Lagrangian particles L (right). Bottom: Long-shot view capturing the entire scenario.

u⊤∗ = u⊤ − 2R̄T

ρη∗
∇sΓ

∗ +
1

ρ
g⊤. (7)

where ∗ denotes the updated quantities. Note that in these
equations, the tangential velocity u⊤ describes the tangen-
tial motion within the thin film and is independent of the
volumetric velocity field.

Interfacial Enhancement: We solve the interfacial dy-
namics using a hybrid particle-particle approach on MLSLS
particles Ei following MELP [4]. We introduce an extra
set of Lagrangian particles L to track the distribution of
interfacial physical properties. These Lagrangian particles
L are positioned on the region interfaces and advect along
the interfaces, carrying various physical quantities (see Ap-
pendix C.1). They interact with MLSLS particles Ei to
exchange the physical properties on the interface in L2E
and E2L transfer steps using the SPH-based interpolator.

Note that in contrast to MELP, where Lagrangian parti-
cles are bound to specific regions, our method allows them
to freely move along the interfaces of any region. With both
enclosed regions and the region of ambient air tracked, our
interfacial enhancement operates under the assumption that
each Lagrangian particle resides between the interfaces of
two distinct regions. Each Lagrangian particle contributes
to the interfacial flows of two regions and, in turn, is influ-
enced by them. Therefore, at the beginning of the process,
we transfer the quantities from Lagrangian particles L to
the MLSLS particles E of their two closest regions. After
computing interfacial dynamics on each region, we transfer

the updated quantities backward and finally update the
Lagrangian particles L.

The overall process for solving the interfacial flow is
depicted in Figure 8 and summarized as follows:

(1) E Redistribution: Solve a pseudo-pressure equation
to redistribute Ei particles on the interfaces, to ensure a
uniform distribution;

(2) L2E Transfer: Transfer the physical quantities from
Lagrangian particles L to MLSLS particles Ei of their two
closest regions;

(3) Geometry Computation: Compute the geometry-
related properties, including domain area a, thickness η,
surface concentration of surfactant Γ on each region; fit MLS
surfaces on Ei to build codimension-1 differential operators,
including surface gradient ∇s, surface divergence ∇s·, and
surface Laplacian ∇2

s on each region;
(4) Interfacial Flow Equation Computation: Solve Equa-

tion (6) and Equation (7) on MLSLS particles Ei using IISPH
method on each region;

(5) E2L Transfer: Transfer the updated tangential veloc-
ity u⊤ and its divergence ∇s · u⊤ backward from MLSLS
particles Ei to Lagrangian particles L; update the thickness
η for Lagrangian particles based on the transferred diver-
gence.

For more detailed information, please refer to Ap-
pendix C.

5.3 Time Integration
The overall time integration of our approach includes the
following steps:
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(1) MLSLS Particles Advection: Advect MLSLS par-
ticles E (Section 4.2.1); Advect Lagrangian particles (Ap-
pendix C.1, optional);

(2) Particle-To-Grid Propagation: Reconstruct regional
level sets ϕi based on MLS surfaces fitted on E and then
reconstruct the implicit interface on the global level set ϕG

and indicator map χG (Section 4.2.2);
(3) Grid-To-Particle Correction: Project particles Ei onto

regional level sets ϕi and reseed particles Ei for all regions
(Section 4.2.3);

(4) Topological Evolution: Address the topological
changes including splitting and merging (Section 4.2.4);

(5) Velocity Advection: Advect velocity field uG using
the MacCormack method.

(6) Volumetric Multiphase Flow Solving: Solve the vol-
umetric multiphase flow in Equation (1) on grid G with
the surface tension approximated on MLSLS particles E
(Section 5.1);

(7) Interfacial Flow Solving (Optional): Solve the in-
terfacial flow in Equation (3) on MLSLS particles E using
interfacial properties transferred from Lagrangian particle
L (Section 5.2);

6 RESULTS

We demonstrate the capabilities of our solver through a
series of simulations. The configuration and running time
of the simulations are provided in Table 3 which shows
that all the simulations run ranging from 11 seconds (Four
bubbles 3D) to 3.8 minutes (Rising bubbles 3D) per timestep,
depending on the scene complexity. For visualization, we
perform marching cube on regional level sets ϕi to extract
the region surfaces and use ParaView for rendering all
2D simulations. 3D results are rendered using Houdini.
We use ColorPy [38] to compute the interference color of
the thin film from its thickness. Additional validations for
surface tracking and curvature estimation are detailed in
Appendix D and E.

6.1 Validation
Plateau border: We validate our method on bubbles driven
by Plateau’s law, which has been studied in previous works
[1], [4]. According to Plateau’s law, which states that soap
films always meet in groups of threes, forming an angle
(dihedral angle in 3D) of precisely 120 degrees between
films. To verify this, we initialize four bubbles that collide
and adhere to each other. We visualize the results in Fig-
ure 11 (2D) and Figure 12 (3D). The corresponding data
are summarized in Table 2, which shows that the error

Fig. 10. Randomly initialized packed bubbles merging one by one. We
color the surface mesh based on region indices.

Fig. 11. Four 2D bubbles colliding together. We depict the indicator map
χ (colored regions) and MLSLS particles E of each region (dark colored
dots) on the left side; we also visualize the region surfaces (black lines)
and the contour of the global level set ϕ (blue line) on the right side.

Fig. 12. Four 3D bubbles converging, adhering to each other, and
forming the 120-degree angle at the joint. Top: Photorealistic rendering.
Bottom: Colored surface mesh and MLSLS particles E of each region.

of the measured dihedral angle remains below 6% for all
experiments. This outcome validates the accuracy of our
method in simulating surface-tension-driven interfaces.

Merging bubbles: Next, we validate our approach by
solving minimum surface problems as in [14], [29]. As
shown in Figure 10, we initiate a configuration consisting of
128 bubbles of varying sizes, tightly packed within a cubic
domain. At every 10 frames, we introduce perturbations
to the system by merging the smallest bubble with one
of its neighboring bubbles. As two bubbles merge, the
whole system undergoes deformation driven by the surface
tension, gradually transitioning towards a new equilibrium
configuration that minimizes the overall surface area.

6.2 Examples

Droplet and bubbles: We first showcase our solver’s ca-
pability in tackling multiphase systems consisting of both

Set-up 2D four bubbles
Pairs 1-2 1-3(a) 2-3 1-4 3-4 1-3(b)
Angle 119.1 122.7 118.2 115.6 118.1 126.3
Error 0.7% 2.2% 1.5% 3.7% 1.6% 5.25 %
Set-up 3D four bubbles
Pairs 1-2 1-3 1-4 2-3 2-4 3-4
Angle 115.0 121.8 120.3 121.7 124.5 113.8
Error 4.2% 1.5% 0.3% 1.4% 3.75% 5.2%

TABLE 2
Numerical results of Plateau Border example. In the 2D example, the
labels 1-4 correspond to the green, yellow, blue, and orange bubbles

shown in Figure 11. In the 3D example, we examine the dihedral angles
between regions. The labels 1-4 correspond to green, yellow, purple,

and blue bubbles shown in Figure 12.
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Fig. 13. Four jets emit above a stack of bubbles, flowing through the gaps between bubbles, resulting in the rise of the water line. Top: Photo-realistic
rendering. Bottom: Colored surface mesh and MLSLS particles E .

volumetric and interfacial components. As depicted in Fig-
ure 14, we begin with a liquid tank containing two sub-
merged bubbles. Three other bubbles and a droplet are
released and fall on the tank due to gravity. We show that
our method successfully captures the topological changes
during the simulation, including the merging of the droplet
with the tank and the fragmentation of a bubble into smaller
bubbles.

Jet on bubbles: Next, we show a similar example with
a more drastic volumetric flow setting. As depicted in
Figure 13 we initialize the scenario with a collection of
tightly-packed bubbles in a cubic domain situated atop the
surface of the liquid tank. Four pipes emit liquid jets above
the bubbles, causing the liquid to flow through the gaps
between bubbles and merge with the underlying liquid
tank. As the simulation progresses, the water line steadily
rises.

Rising bubbles: Next, we showcase our method’s ability
in tackling a large number of bubbles and their interactions
and foam formulation in a multiphase environment. As
shown in Figure 17 and Figure 6, we demonstrate the ro-
bustness and versatility of our method in capturing intricate
foaming flow. We set up the simulation in a cubic aquarium
by continuously generating underwater foams. The foams,
driven by the buoyancy, rise, break through the liquid sur-
face, adhere to other foam bubbles, and form stacked layers
on top of the liquid. Our approach exhibits effectiveness
in handling a large number of regions (approximately 300
regions in 2D, 800 regions in 3D) and the complex inter-
action and topological changes between them. Through the
utilization of moving particles, we can accurately track and
represent small-scaled foam even with a volume as small
as several cells. The large-scale foaming flow has also been
explored in a research paper by [5], where they achieved the

simulation of 10000 bubbles by running on a supercomputer.
Bubble with interfacial flow: Next, we show our solver

can facilitate complex interfacial flow details on a deforming
surface, which is comparable to the previous literature of
purely Lagrangian methods [2]–[4] . As shown in Figure 16,
we set up an oscillated bubble with interfacial flow dynam-
ics. We initialize the velocity field perturbed by Perlin noise
and derive the tangential velocity of Lagrangian particles L
from a vorticity field. Starting from a perturbed thickness
field, driven by the surface tension, the bubble gradually
oscillates and forms intricate vortex patterns on its surface.
To enhance the swirling flow on the surface, we apply
vorticity confinement to the interfacial velocity.

The life-cycle of a bubble: The life cycle of a bubble,
which involves various visually captivating phenomena,
has been extensively studied in prior research [39]–[41]. The
complete life cycle of a bubble encompasses several stages
[40]. Firstly, the bubble is generated underwater and begins
to rise, interacting with the surrounding liquid along its

Fig. 14. The droplet, bubbles, and a liquid tank are initialized within a
cubic domain, where they undergo collision, merging, and splitting. Left:
Photo-realistic rendering. Right: surface mesh colored according to the
fluid phase.
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Fig. 15. Bubbles on a tank with multiregional interfacial flow. Four bubbles move and merge with the surfactant-coated surface of the liquid
tank, where the surfactant flows across their interconnected interfaces and diffuses on the tank surface. Our method effectively addresses the
multiregional volumetric and surface dynamics to reproduce this phenomenon. Left: The photorealistic rendering. Right: The colored Lagrangian
particles L on the left half, and the sectional view of the underlying MLSLS particles Ei and Lagrangian particles L on the right half.

ascent. At the free surface, the thin film of the bubble starts
to drain, gradually decreasing in thickness. Eventually, the
film breaks at its thinnest point, causing the film to retract
and fragment into numerous tiny droplets.

We reproduce this process as in Figure 9, where a bubble
initially rises within a liquid bath covered by a surfac-
tant layer. Upon reaching the surface, the bubble ascends
through the liquid-air interface, resulting in the surfactant
flowing atop the bubble. As the bubble settles on the liq-
uid bath, its vertical oscillation influences the surrounding
surfactant layer, leading to intricate color patterns. When
the thickness of the bubble decreases below a threshold
(2.0 × 10−8 m), we intentionally rupture the bubble. The
Lagrangian particles on the bubble are then converted into
”splash” particles which are simulated with the volumetric
IISPH method [42]. The bubble bursting leaves a black hole
in the surfactant layer on the liquid surface, which is rapidly
filled due to the Marangoni effect. As the splash particles fall
back into the liquid bath, they undergo a reverse conversion
back into Lagrangian particles, retaining their original prop-
erties, which create dotted patterns on the surface.

Double bubbles with interfacial flow: We simulate
binary collisions with bubbles of different surfactant con-
centrations to validate the multi-region interfacial flow sim-
ulation in Figure 7. The Lagrangian particles are initialized
with attributes disturbed by Perlin noise. After two bubbles
collide, the interfacial surfactant, driven by the concentra-
tion gradient, flows from the lower bubble to the upper one,
across the non-manifold joint, fostering intricate patterns on
the bubbles.

Bubbles on tank with interfacial flow: We further
validate the multiphase simulation with two submerged
bubbles and two additional bubbles released over a liquid
tank. Both the bubbles and the tank carry surfactants of
varying concentrations on their interfaces. As shown in Fig-

ure 15, gravitational forces cause the ascent and descent of
the bubbles toward the liquid surface. This process enables
the interconnection of their interfaces, thereby facilitating
the multi-region interfacial flow of the surfactant. The con-
centration variation then drives surfactant flow across the
interfaces, diffusing onto interfaces with low concentrations.
Our method adeptly addresses both the volumetric and
interfacial flows within this complex multiphase and multi-
regional system.

7 DISCUSSION AND LIMITATIONS

We propose a hybrid particle-grid approach that effectively
captures a variety of complicated bubbles and foams phe-
nomena. The key aspect of our approach is a novel particle
representation that integrates the computational character-
istics of moving least-squares particles and particle level-set
methods. For each individual bubble, we adopt a carefully
designed particle system to capture its interface evolution
and handle the topological changes in foaming flow. These
particles play two essential roles in our approach. From
a geometric perspective, they serve as interface trackers,
allowing us to accurately capture the structure evolution of
the deformed surfaces and the topology of multiphase fluid
domains. Meanwhile, the particle systems across all bubbles
collectively establish an implicit surface representation on
an unsigned level set, augmenting volumetric multiphase
flow simulation. From a dynamics perspective, these parti-
cles provide robust discrete differential stencils on thin films
to allow solving interfacial flow details. By integrating our
particle representation with the volumetric multiphase flow
framework, our method empowers the simulation of diverse
and intricate bubble and foam phenomena, capturing the
dynamic and complex structural evolution within volumet-
ric fluids, as well as intricate interfacial flow occurring on
interfaces.
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Fig. 16. A bubble showcasing surface-tension-driven oscillation and
swirling interfacial flow. The photo-realistic rendering and colored La-
grangian particles L are visualized, with MLSLS particles E depicted at
the bottom left corner.

Our method distinguishes itself from the existing liter-
ature on hybrid particle-grid methods in terms of the role
particles play in the pipeline. Unlike previous methods, e.g.,
the particle level set method [43] or PIC/FLIP methods [44],
where particles primarily serve as auxiliary structures to
serve for interface and mass tracking, our MLSLS particles
play their multifaceted, prominent roles in our framework.
First, the dynamics of these particles drive the evolution
of the bubble and foam interface, where the level set plays
an auxiliary role in extending their values onto the back-
ground grid. The coupling between particles and the grid
is embodied in the propagation-correction process (i.e., we
use the grid information to correct particles, not vice versa),
which is significantly different from the traditional hybrid
schemes. Moreover, our MLSLS particles allow accurate
simulation of surfactant flow details on deforming inter-
faces, which can be comprehended as a natural extension of
the previous works on particle interface methods (e.g., SPH
[45], MLS [16] and MELP [4] particles) to tackle nonmanifold
and multiphase challenges. Overall, our method stands out
from existing particle-tracking methods by enabling co-
simulation of volumetric multiphase flow and interfacial
flow, which allows us to faithfully reproduce a host of
previously challenging bubble and foam phenomena that
simultaneously exhibits complex volumetric and interfacial
flow features.

Limitations: The following are the limitations of our
approach. The first limitation is the instability caused by
the surface tension. Our multiphase solver integrates the
surface tension as an explicit pressure jump, which could
lead to instability when dealing with fluids with a sig-
nificant density difference and large surface tension. The
second limitation lies in the limited ability to express diverse

Fig. 17. A large number of submerged bubbles ascending to the water
surface and stacking together. Top: Results colored according to the
fluid phase. Bottom: Results colored according to region indices.

geometries, especially dimensional structures, within our
discretization. Currently, our discretization is designed to
handle volumetric regions with closed manifold surfaces.
As a consequence, we cannot represent individual thin films
or other open codimension-1 structures as separate entities
within our simulations.

Future Work: Based on our current work, we propose
two potential avenues for future exploration. First, we seek
to investigate the coupling between the volumetric flow
with the interfacial flow to reproduce more complicated
codimensional scenarios, e.g., a thin liquid flows along the
bubble gap and subsequently fills a liquid tank. These sce-
narios involve the interplay of codimensional structures not
only at the interface itself but also at the non-manifold joint
across codimensions. To tackle these challenges, a carefully
designed strategy is required to implement the codimen-
sional transitions and achieve physically-accurate coupling.
Second, we aim to explore further the Lagrangian repre-
sentation to facilitate the simulation of foaming flow that
involves bubbles with significant differences in scale (e.g.,
with bubble sizes crossing several orders of magnitude). In
this setting, Lagrangian particles are expected to not only
evolve the interface’s geometry but also track the subcell
bubble volumes (e.g., see previous works in this direction
[8], [36]). In particular, we plan to explore the adaptivity and
flexibility of Lagrangian particles to track bubbles ranging
from regular-sized to those across drastically different size
scales. Moving forward, we intend to expand our simula-
tions further to cover the scenario with a significant number
of bubbles with varying sizes, aiming to reproduce more
comprehensive and realistic phenomena, e.g., the foaming
flow in turbulent breaking waves.
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bubbles 3D” were recorded when there was the maximum number of regions. Specifically, ”Merging bubbles 3D” had 128 regions, while ”Rising
bubbles 3D” had 767 regions. Device A is the computer with Intel(R) Core(TM) i9-9980X and Nvidia GeForce RTX 2080Ti, and Device B is the

computer with AMD Ryzen 7 1700X and Nvidia GeForce GTX 1060Ti.
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