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This paper presents a two-way coupling approach to simu-
late bouncing droplet phenomena by incorporating the lu-
bricated thin aerodynamic gap between fluid volumes. At
the heart of our framework lies a cut-cell representation of
the thin air film between colliding liquid fluid volumes. The
air pressures within the thin film, modeled using a reduced
fluid model based on the lubrication theory, are coupled
with the volumetric liquid pressures by the gradient across
the liquid-air interfaces and solved in a monolithic two-way
coupling system. Our method can accurately solve liquid-
liquid interaction with air films without adaptive grid refine-
ments, enabling accurate simulation of many novel surface-
tension-driven phenomena such as droplet collisions, bounc-
ing droplets, and promenading pairs.
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1 | INTRODUCTION18

When fluid volumes get small, i.e., on the length scales betweenO (0.1) µm–O (1) mm, their interactions exhibit com-19

plicated flow dynamics and geometric forms governed by many small-scale physical processes. For instance, a fluid20

volume can collide and bounce [1], walk [2, 3], wrap [4, 5, 6], glide [7], support and drive [8], or form non-manifold21

geometric structures [9, 10]. These flow processes are remarkably different from their macroscopic counterparts, be-22
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having like deformable solids (e.g., a fluid surface can hold heavy objects, and fluid volumes can collide and bounce)23

rather than shear irresistible liquids. A dominant force underpinning these small-scale flow processes is surface ten-24

sion. The recent advances in computational physics [11, 12, 13, 14, 15, 16] and computer graphics [17, 18, 19, 6, 20]25

in devising algorithms to accurately simulate surface tension with complex geometries and multi-physics interactions26

have enabled numerical explorations of an ensemble of new interfacial and solid-fluid coupling phenomena that were27

impractical to simulate with traditional methods.28

However, among these new surface-tension phenomena being tackled, devising first-principle approaches to29

model the intricate interactions between droplets and fluid volumes remains challenging due to the difficulties of30

handling the multi-phase and multi-scale coupling. When a small droplet falls onto a pond surface, it could rebound,31

decrease its size, and sit on the deforming surface for seconds long, before its eventual merge into the water bulk (e.g.,32

see [21, 22, 23]). The physical mechanics underpinning this seemingly discrete phenomenon lie in the evolution of a33

thin air gap between the droplet and the liquid surface. When two fluid volumes approach each other, a thin layer34

of the surrounding air is trapped in the narrow gap between them [24, 21]. As the air gap’s thickness decreases, the35

air viscosity dominates its dynamics according to the lubrication theory, which leads to the resistance of air drainage36

and prevents the liquids from merging together. As the air leaks out, the gap narrows to a point where it can no37

longer maintain the separation of the liquids, eventually leading to their coalescence [21]. Intuitively speaking, the38

dynamics of the thin gap acts as an air cushion transmitting pressure forces between the liquid volumes and coupling39

their interfacial dynamics without exhibiting any liquid-liquid contact. During the process, the air gap’s thickness scale40

is O (0.1) µm, in comparison to O (1) mm as the droplet size.41

Thismultiphase andmultiscale coupling problemunderpinsmany droplets splashing, adhesion, andwalking droplet42

phenomena [22], which has drawn extensive attention from experimental and theoretical physicists. In the literature,43

the rebound behavior of droplets in the binary collision was first reported by Rayleigh [25] and analyzed by Pan et al.44

[1], Zhang and Law [26]. Similar rebound phenomena have also been observed when droplets bounced on the soap45

films [27], rigid surfaces [28, 29] and liquid surfaces [24]. Among these works, Couder et al. [21] reported the role of46

air film in the process of droplet bouncing. Further studies show that droplets can interact with liquid in different ways,47

including walking [30, 2, 3], diffraction and interference [31], tunneling across the submerged barrier [32], and orbit-48

ing [33, 34]. Bush [35] summarized these quantum-style behaviors and connected the hydrodynamics system with49

the quantum theories. The quantum analogs also emerge in multi-droplet scenarios, including orbiting pairs [36, 37],50

promenading pairs [38], stable spin lattices [39], droplet rings [40]. The experimental studies and theoretical models51

for quantum analogs are reviewed and summarized in [41].52

From the perspective of the numerical simulation, thin fluids, such as sheets [42, 43], splashes [44, 45], bubbles53

[46, 47, 48], films [49, 50, 20], as well as air gaps discussed above, all exhibit codimensional geometric features that are54

challenging to resolve with a traditional volumetric discretization (e.g., a Cartesian grid or a simplicial mesh). To capture55

these thin fluid features, researchers invented a broad range of hybrid geometric representations, such as particles56

[51, 52, 20], surfacemeshes [53, 10, 47, 43], implicit interfaces [46, 54, 55], and hybrid particle-grid representation [42,57

19]. By tracking the geometry changes and assigning degrees of freedom to the thin structures, these representations58

enable us to discretize and effectively solve the physical forces acting on codimensional structures. Moreover, these59

codimensional representations allow researchers to simplify the physical models further. For instance, in the context60

of modeling bouncing droplets, recent works [56, 57, 13, 58, 59] employ a reduced lubrication film model to resolve61

the thin air flow within the gaps by considering the tangential viscosity as the primary force.62

Cut-cell methods (e.g., [60, 61, 62]) provide an effective alternative for modeling thin features while keeping the63

uniform grid structure. In contrast to adaptive mesh refinement (AMR) methods [63, 64, 12], which recursively refine64

the grid to achieve sufficient resolution on thin features, cut-cell methods divide an interface cell with fine geometries65
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and evaluate the flow details with additional degrees of freedom. Its main advantage over dedicated codimensional66

modeling is that it offers a straightforward and intuitive way to integrate the thin features with their surrounding67

volumetric domains. These methods are commonly employed in simulating the thin gap flow [65, 66], multiphase68

fluids [67], fluid-rigid interaction [60, 61, 68], and fluid-deformable interactions [69]. E.g., Chen et al. [70] improves69

cut-cell methods by incorporating a pressure reposition strategy, resulting in second-order accuracy and discretization70

orthogonality. When it comes to thin-gap flow, Qiu et al. [65] solved a two-way coupling systembetween thin gaps and71

solids, where additional pressure degrees of freedom were placed on the solid surface. Another category of research72

strives to capture the sub-cell flow details by integrating the irregular cell into the Eulerian framework, including73

Voronoi cells [71, 72], tetrahedral cells [73] and tilted cells [74].74

We propose a novel two-way coupling approach to simulate the bouncing droplet phenomena based on first75

principles. Our algorithm couples fluid volumes, thin air gaps, and interfacial forces in a monolithic manner to model76

the aerodynamics-driven fluid contact processes by producing simulations that match real-world experiments in three-77

dimensional settings. Our key idea is to discretize the air gap as a set of irregular grid cells and devise a reduced78

fluid model to characterize their coupling with the liquid volumes. Our method creates a new set of irregular grid79

cells specified with varying thicknesses that can be embedded in a Cartesian grid to characterize the thin air film.80

This novel geometric representation captures the air-liquid interactions within a thin gap with an arbitrary thickness81

without employing any adaptivity (which is impractical in this setting due to the drastically different length scales). On82

top of this novel geometric discretization, we further build a monolithic system to solve the coupling problem.83

We demonstrate the effectiveness of our approach by simulating different bouncing droplet phenomena involv-84

ing thin intervening air films. These phenomena include binary collision, bouncing droplets, promenading pairs, and85

droplet pinch-off. We also validate the accuracy of our model by comparing the simulation results with experimen-86

tal videos in different collision and contact settings. Our method enables three-dimensional simulations of bouncing87

droplets that match real-world physics, and it produces visually authentic animations to demonstrate these compli-88

cated processes. We summarize the main contributions of our work as:89

• A discrete representation to model aerodynamic thin films with varying thicknesses as the single-layered irregular90

cells.91

• A cut-cell grid method to couple multiphase fluids with contrasting length scales.92

• A monolithic coupling algorithm to solve the lubricated air film and incompressible flow in a single linear solve.93

• A unified simulation framework to simulate bouncing droplets with physical accuracy.94

This paper is organized as follows. In Section 2, we present the physical model of the system. Section 3 introduces95

the geometrical discretization and defines the differential operators on the cut-cell liquid regions and the single-layer96

irregular air cells. We then proceed to build a coupling system to resolve the pressure across the volumetric liquid97

regions and the lubricated air film in Section 4. In Section 5, we outline our temporal evolution scheme and introduce98

the remaining steps of the algorithm. The results of the numerical validation and the simulation are presented in99

Section 6. Finally, we conclude our work and discuss the limitations and future directions in Section 7.100
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F IGURE 1 Illustration of fluid domains and interfaces. The entire computational domain is divided into three
domains. Ω1 is liquid, Ω2 is the thin air film, and Ω3 is ambient air. Interfaces are denoted using the corresponding
subscripts (Γ12, Γ13, Γ23). We show examples of the domain evolution at t = {0, t1, t2}. Left Top: When t = 0, a droplet
Ω1,1 is released above the liquid bath Ω1,2. The distance between two liquid volumes is more significant than a
predefined film thickness threshold hmax . Left Bottom: When t = t1, the liquid volumes approach each other. The
thin air film Ω2 is identified where the distance between two liquids is less than hmax . Right: When t = t2, the liquidbath deforms due to the impact of the droplet. In the air film, we define local coordinates on Γ12 ∩ ∂Ω1,2 as atangential basis vector et and a normal basis vector en . The local coordinates are parameterized by ξt and ξn . Thelocal thickness h of the air film at x ∈ Γ12 ∩ ∂Ω1,j is approximated as its distance to Ω1,k . ut↑,ut↓ specify the localtangential velocities on the upper and down sides of air film (both denoted as Γ12). Similarly, un↑,un↓ specify the localnormal velocities on the two sides.

2 | PHYSICAL MODEL101

2.1 | Domain Definition102

As shown in Figure 1, we use Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Γ to denote the entire fluid domain. In particular, we use Ω1 to103

represent liquid volumes (including both bulks and droplets), Ω2 to represent the thin air film, and Ω3 to represent104

ambient air. The liquid domain Ω1 can be further divided into liquid volumes (Ω1,j , j ∈ Î∗) (e.g., liquid bath and105

bouncing drops) according to their topological connectivities. The thin air film Ω2 is defined as the region where the106

distance between two liquid volumes is less than a predefined thickness threshold hmax . Mathematically, this film107

can be featured as Ω2 = {x ∈ Ω : x < Ω1 and d (x,Ω1,j ) + d (x,Ω1,k ) ≤ hmax with j , k }, where d (x,Ω1,j ) =108

minx̃∈Ω1,j
( |x − x̃ | ) returns the distance between x and Ω1,j . In addition to Ω, we use Γ to denote the fluid interface109

across different domains. We let Γ = Γ12 ∪ Γ23 ∪ Γ13, where Γ12 is the interface between Ω1 and Ω2, Γ13 = ∂Ω1 \ Γ12 is110

the interface between liquid and ambient air and Γ23 = ∂Ω2 \ Γ12 is the interface between thin film and ambient air.111
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2.2 | Volumetric, Multiphase Fluid Model112

We model the motion of fluid volumes by solving the multiphase, incompressible Navier–Stokes equations113


∂u

∂t
+ u · +u = −+pi

ρi
+ µi
ρi

+2u + g,

+ · u = 0,

x ∈ Ωi , i = 1, 2, 3 (1)

with the interface jump conditions114


[p1 ] = γκ, x ∈ Γ12 ∪ Γ13,

[p2 ] = 0, x ∈ Γ23,

[u] = 0, x ∈ Γ12 ∪ Γ13 ∪ Γ23,

(2)

where u is the velocity, g is the gravitational acceleration, pi is the pressure in Ωi , γ is the surface tension coefficient,115

and κ is the local mean curvature. [ · ] denotes the jump condition across an interface.116

Solving Equation (1) on a Cartesian grid directly is impractical, due to the vanishingly small domain thickness of117

the air gap. Therefore, we exercise simplification in each domain. For the liquid domain Ω1, we drop the viscosity118

term. For the ambient air domain Ω3, we assume the air pressure is constant, i.e., p3 = patm , where patm is the default119

atmospheric pressure. The model simplification of thin-film flow is nontrivial, which we will discuss next.120

2.3 | Thin-film Fluid Model121

We model the trapped air between fluid volumes as a lubricated thin film of air volume. We will first describe its122

geometry model and then present the dynamics equations.123

2.3.1 | Thin-film geometry124

Due to the extremely thin nature of the trapped air between fluid volumes, conventional grid methods struggle to125

track it efficiently. Recent advancements [58, 13] have proposed simplifying the air film model to single-layered126

Degrees of Freedom (DoF) with varying thicknesses. These DoFs are defined and solved only within a limited range,127

where the thickness remains below a certain threshold. Such simplification enables efficient tracking and accurate128

reproduction of head-on collisions of droplets. Our approach takes this idea further by integrating it with a standard129

Eulerian grid, facilitating more intricate interactions between liquids and the trapped air film. We model trapped air130

on a thin film with spatially varying thickness between the fluid volumes. Next, we discuss its geometry model and131

parameterization.132

For geometry description,we model a thin layer of air as a codimension-1, open surface with varying thickness em-133

bedded in codimension-0 space. The two sides of the surface are the two interfaces between different fluid volumes134

in Ω1 and the air film Ω2. The open boundary of the surface (as a codimension-2 rim) is the interface between the air135

film Ω2 and the ambient Ω3.136

For surface parameterization, we define a local coordinate system at each point of the surface by establishing a137

set of orthonormal basis vectors. For example, as shown in Figure 1, in two-dimensional space, we define et and en138

according to the local geometry as the tangential and normal basis vectors. A point in the air film can be described139

using its coordinates ξt and ξn . These definitions can be naturally extended to three-dimensional cases. For each local140
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point within the film, we define its local thickness h as the sum of distances to two adjacent liquid volumes.141

2.3.2 | Thin-film dynamics142

Next, we will derive the governing equations for thin-film airflow based on Equation (1). We will first present the143

differential form and then the integral form.144

Differential form145

According to [58, 13, 12], in scenarios where droplets exhibit bouncing behaviors, the pressure increase within the146

film is relatively small due to the low collision velocity. Therefore, the incompressible assumption within the air film is147

deemed acceptable for reproducing the desired phenomena. We adopt this simplification, following previous works,148

by modeling the air film as an incompressible fluid.149

Following [75, 58], we reduce Equation (1) by modeling the normal and tangent gradients of air pressure in the150

thin film as151


∂p2
∂ξt

= µ2
∂2ut

∂ξ2n
,

∂p2
∂ξn

= 0,

x ∈ Ω2, (3)

with152


[p2 ] = −γκ, x ∈ Γ12,

[p2 ] = 0, x ∈ Γ23,
(4)

where ξn and ξt denote the local unit normal and tangent directions, respectively, and un ,ut are normal and tangent153

components of the air velocity, respectively. The intuition behind Equation (3) is as follows: As the thickness of the154

air film decreases, especially when the thickness is much smaller than the characteristic tangent length, the viscosity155

drag becomes the dominant force [76, 75].156

Integral form157

Based on Equation (3), we can further derive the integral form for thin-film flow. Given a small control volume V158

in the air film, we define its tangent volume boundary as ∂Vt and its normal volume boundary as ∂Vn ⊆ Γ12. The159

pressure within V is governed by the incompressibility constraints in Equation (1), where the sum of the integrated160

flux through the boundary is zero. By substituting the lubrication model into the tangent flux on ∂Vt and considering161

the pressure-gradient force on the normal boundary ∂Vn , the air-film pressure takes the form162

∫
∂Vt

h2

12µ

∂p2
∂ξt

ds + ∆t

∫
∂Vn

1

ρ2

∂p2
∂ξn

ds =

∫
∂Vt

ut↑ + ut↓
2

ds +
∫
∂Vn

unds (5)

with the jump conditions on the interfaces163
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Ω2: Air film

Ω1: Liquid

Ω3: Ambient air

𝜙

𝒖

𝑝1

𝑝2

F IGURE 2 Discretization of liquids and the air film. The liquid domain Ω1 (blue) is divided into several separate
liquid volumes on the Cartesian grid enhanced by cut-cells, with level set φ, pressure p1 and velocity u sampled on
nodes, cells, and faces. In the gap between liquid volumes, the air film Ω2 (green) is represented by single-layered
irregular cells and the cut-cell meshes to solve pressure p2.


[p2 ] = −γκ, x ∈ Γ12,

[p2 ] = 0, x ∈ Γ23,
(6)

where∆t is the time step, ut↑ , ut↓ represent the local tangent boundary velocity evaluated at Γ12∩∂Ω1,k and Γ12∩∂Ω1,j164

respectively (see Figure 1), and un is the local normal boundary velocity. We refer readers to a detailed derivation in165

A.166

3 | DISCRETIZATION167

3.1 | Sub-cell discretization168

We discretize the liquid domain Ω1 as multiple separate liquid volumes on a Cartesian grid with cut cells. Every169

liquid volume is tracked in a regular background grid by a separate node-based level set. The cut-cell mesh is rebuilt170

from the level set to represent its interface. The interface grid cells are cut into sub-cells. The pressure samples are171

repositioned carefully to maintain the orthogonality of the gradient to the cut-cell interface, thus achieving sub-grid172

accuracy. Based on the cut-cell meshes, the air film Ω2 is constructed as single-layered irregular cells sandwiched173

between cut-cell-based liquid volumes, as shown in Figure 2.174

3.1.1 | Liquid discretization175

We divide the liquid domain Ω1 into separate regions by running a flood-fill algorithm. As shown in Figure 3, we track176

each liquid region by creating its own level set function on a regular background grid. We define the interface ∂Ω1 by177

constructing a cut-cell isocontour mesh using the marching cubes algorithm [77]. Specifically, to find the intersection178
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Δ𝑥

ℎ/2

𝑝1

𝑝2

Δ𝑥

𝜙

𝒖

Δ𝑥

Ω1,1

Ω1,2

Ω1,1

Ω1,2

F IGURE 3 Discretization of the liquid level set, velocity, and pressure. We split the liquid domain into multiple liquid
regions (Ω1,1,Ω1,2, ...). Left and Right: Each region has its own node-based level set φ (black dots) and face-based
velocity field u (solid arrows). The interfaces ∂Ω1 are discretized into the cut-cell mesh (blue segments) by
performing the marching cubes algorithm on level sets. The velocity fields are sampled on grid faces (solid arrows)
and extrapolated (dashed arrows). Middle: When coupling fluid regions with the air film (green), the normal velocities
on the cut faces (dashed arrows) are interpolated from the grid faces. The pressure samples (blue dots) in the cut-cell
are repositioned on the same iso-distance (blue dotted lines) parallel to the interface, following [70].

between an interface and a grid edge, we check the sign change of the level set on the grid edge. These intersections,179

called cut vertices, can be expressed mathematically as x = (1 − θ )xl + θxm with θ = φ (xl )/(φ (xl ) − φ (xm ) ) , where180

xl and xm are the two endpoints of a grid edge. The cut vertices are then connected into meshes (segment mesh in181

2D or triangle mesh in 3D). The faces of this cut-cell mesh are referred to as "cut faces" to distinguish them from the182

regular "grid faces".183

As illustrated in Figure 3, the velocity field for each liquid volume is split into orthogonal components and stored184

in grid faces. The interface velocities are sampled at the center of the cut faces and interpolated from the grid faces.185

Under an inviscid assumption, only the normal component of the interface velocity is preserved.186

We follow [70] to reposition the pressure samples along the iso-surface within the cut-cell for improved sub-187

grid accuracy and discretization orthogonality. By assuming equivalent pressure values along the iso-surface, a single188

pressure variable for a cut cell can be mapped to multiple pressure samples equidistant to the interface. For each189

cut-cell, an appropriate iso-distance value is determined, such that the iso-surface intersects with the perpendicular190

lines of all its grid faces and cut faces through their centroids. These newly generated samples are positioned at191

these intersection points, guaranteeing that pressure gradients are always orthogonal to cell faces and co-located192

with velocity samples at those face centroids. The central difference stencils are then constructed based on this193

discretization. We recommend readers refer to [70] for further details.194

In brief, in our discretization, each liquid cell is surrounded by a cut-cell mesh where velocity is defined, encom-195

passing both cut faces and grid faces. The pressure samples are duplicated at multiple locations to facilitate the196

calculation of differential operators on each face.197

3.1.2 | Air-film discretization198

The air film Ω2 is discretized as a set of single-layered irregular cells seamlessly embedded in the thin gap between199

liquid volumes. These air cells are reconstructed every time step based on the cut-cell mesh of the surrounding liquid200
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F IGURE 4 Discretization of the irregular air film cells in 2D (Left) and 3D (Right). The top and bottom of the air cell
are defined by the cut-cell mesh (green faces). The lateral cell boundaries are discretized as half faces at the rim (grey
faces). un↑ and un↓ are the normal velocity of interfaces at the center of cut faces interpolated from the liquid
volumes. ut↑ and ut↓ are the tangential velocity interfaces evaluated at the cut vertices in 2D or the midpoints of cut
edges in 3D.

volumes. After advection, we construct the cut-cell mesh for liquid volumes and organize the nearby cut faces from201

different regions into groups. One air cell is then assigned on each cut face group with the cut-meshes serving as its202

top and bottom surface, as shown in Figure 4. The air pressure degrees of freedom are placed at the center of the cut203

face groups. More details on the construction of the air film can be found in Section 5.3.204

The air-film thickness varies within a single air cell. For an air cell located between liquid volumes Ω1,j and Ω1,k ,205

given a vertex x on the cut face in ∂Ω1,j ∩ Γ12, the local thickness h is defined as φk (x) where φk is the levelset206

function of the other liquid volume Ω1,k . The thickness of a cut face is defined as the average of its vertices.207

The cut-cell meshes, obtained from the interfaces of liquid volumes, also serve as the top and bottom boundaries208

of air cells. The normal velocities on the top and bottom surfaces un↑ , un↓ are sampled at the center of these cut faces209

and interpolated from the liquid velocity. However, it is challenging to explicitly define the lateral surface of the air cell210

using meshes, especially in three-dimensional cases. Instead, we represent the lateral surface with half faces, which211

are the faces expanded from the rim of the top and bottom meshes along the local normal direction.212

As shown in Figure 4 (Left), for two-dimensional cases, we define half faces on the rim vertices. These half-faces213

are half-height lateral faces connected to the top or bottom of air cells and are normal to the local tangent. The area of214

the half face is approximated as h↑/2 or h↓/2, where h↑ , h↓ are the air film thickness evaluated at the top and bottom215

cut vertices. The tangent velocities on the half faces are interpolated from the liquid volumes at the cut vertices on216

the rim of the air cell, denoted by ut↑ and ut↓ respectively. The tangent flux between two air cells is approximated at217

both top and bottom boundaries as ut↑h↑/2 + ut↓h↓/2. Note that this boundary tangent flux form is only utilized as218

the first term on the right-hand side in Equation (5).219

In a three-dimensional case, the half faces are defined on the rim edges of the top and bottommeshes, as in Figure220

4 (Right). The lateral tangent velocities ut↑ , ut↓ are interpolated at the midpoint of the rim edges, and the lateral area221

of the half face is l h/2 where l is the length of the rim edge. Unlike the two-dimensional case, there is no one-to-222

one mapping between the half faces on the top and bottom boundaries in the three-dimensional case. To obtain the223

tangent flux between two air cells, we iterate over the common rim edges between the two cells and sum up the flux224

of the half faces on these rim edges. With the lateral interfaces of air cells defined on the half faces based on the225
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F IGURE 5 Discretization of three types of gradient operators in 2D. The three types of discretized gradient
operators – liquid-liquid, air-liquid, and air-air – are depicted on the grid. The involved liquid and air cells are colored
in blue and green, separately. The pressure DoFs are represented by large dots, while the distances between DoFs
utilized in gradient operators are visualized as arrowed lines.

top and bottom boundaries, our method effectively handles the non-manifold film geometry, as shown in Figure 6226

(Middle) and Figure 14.227

To summarize, the inter-liquid gap is discretized into single-layered air cells, with cut-cell meshes of liquid volumes228

serving as their top and bottom boundaries. The lateral boundaries of the air cells are defined as half faces along the229

periphery of the top and bottom boundaries, where the tangential velocity within the film is defined.230

3.2 | Discrete differential operators231

Next, we will build discrete differential operators for the liquid volumes, air film, and their interfaces. We provide a232

comprehensive explanation of gradient operators as an example and visualize them in Figure 5. The divergence and233

Laplacian operators can be derived in a similar manner. Additionally, we summarize these density-weighted gradient234

operators within Table 1.235

Gradient operator in liquid236

In a liquid domain, the gradient is defined as +p = (p1,l − p1,m )/d l m between two liquid cell l , m , with the pressure237

samples p1,l , p1,m on the iso-surfaces of cells and d l m = |xl − xm | , as depicted in Figure 5 (Left). On the ambient air238

interface Γ13, we modify the gradient equation by placing the interfacial pressure sample p1,m at the center of the cut239

face and setting it equal to the boundary condition patm . We use S1Ĝ1p1 to represent the matrix form of the pressure240

gradient acceleration +p/ρ in the liquid domain. p1 stands for the liquid pressure vector. Ĝ1 is a difference matrix with241

elements 1 and −1, denoting the pressure difference across the grid faces and cut faces of Γ13. S1 is a diagonal matrix242

with elements 1/(ρ1d l m ) , which can be regarded as the inverse of the area density in the control volume of the face243

between p1,l and p1,m .244
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Gradient operator in air film245

The tangent pressure gradient in the air film is defined on the half faces between adjacent air pressure degrees of246

freedom. As shown in Figure 5 (Right), we sample the pressure p2,l , p2,m at the center of air cells xl , xm and discretize247

the gradient +p =
(
p2,l − p2,m

)
/( |xl − xm | ) on the half faces. On the ambient air interface Γ23, we place the pressure248

sample of the ambient air p2,m on the half face. And the distance between two samples is defined as | (xl − xr ) · et | ,249

where xr is the position of the rim (rim vertex in 2D, midpoint of rim edge in 3D), et is the tangent unit vector at250

xr parallel to ut↑ or ut↓. We use p2 to denote the air film pressure vector and Ĝ2 to denote the tangent pressure251

difference operator on the half faces.252

Gradient operator on air-liquid interface253

Across the interface Γ12 between the liquid volumes and the air film, the acceleration caused by pressure gradient+p/ρ254

is continuous. Disregarding the jump condition, the acceleration on a cut face between the liquid sample p1,l and the255

air film sample p2,m is discretized as +p/ρ = (p1,l − p2,m )/(ρ1d l + ρ2h l m/2) , where d l is the distance from the liquid256

pressure sample to the cut face, h l m/2 is the half thickness evaluated at the cut face, as shown in Figure 5 (Middle).257

The acceleration across Γ12 is given as SΓĜΓ (pT1 , p
T
2 )

T , where SΓ is a diagonal matrix with elements 1/(ρ1d l +ρ2h l m/2)258

describing the inverse of face density in the control volume of the cut faces. ĜΓ = (ĜΓ,1, ĜΓ,2 ) is the difference matrix259

across the interface. Each row of ĜΓ,1 picks out the adjacent liquid pressure sample of the cut face and assigns 1. In260

contrast, each row in ĜΓ,2 assigns −1 for the adjacent air film sample. Thus, ĜΓ (pT1 , p
T
2 )

T returns a vector where the261

entries are pressure differences between the liquid and the air film on the cut faces of Γ12.262

TABLE 1 Discretized gradient operators on between different cells.
Cell type l Cell type m +p/ρ
Liquid Liquid p1,l −p1,l

ρ1 |xl −xm |Liquid Ambient air p1,l −patm
ρ1 |xl −xθ |Air Air p2,l −p2,m
ρ2 |xl −xm |Air Ambient air p2,l −patm
ρ2 | (xl −xr ) ·et |Liquid Air p1,l −p2,m
(ρ1dl +ρ2h l m )/2

4 | COUPLING SYSTEM263

Building upon the sub-cell discretization and its discrete differential operators, we propose a two-way couplingmethod264

for solving the pressuremonolithically across both the liquid volumes and the air gap. This method couples the inviscid265

liquids and the lubricated air film through their cut-cell interface, which enforces the continuous velocity constraint266

naturally. We will now introduce the pressure projection equation for liquids and air film and derive their coupling267

system.268

Liquid domain269

The pressure projection equation for the liquid is discretized on the liquid cells, which gives270

∆t
∑
Fg

Ag

ρ1
+p1 + ∆t

∑
Fn

An

ρ1

∂p1
∂ξn

=
∑
Fg

Agug +
∑
Fn

Anun (7)
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F IGURE 6 Time evolution of 2D scenarios. Top: binary droplet collision. Middle: trinary droplet collision. Bottom:
bouncing droplet. Liquid volumes (blue) are visualized and air films (green) are depicted in the latter two examples.

where Fg is the set of the grid faces, and the cut faces on the ambient air boundary Γ13, Fn is the set of the cut faces271

on the boundary Γ12. ug is the velocity sampled on the faces Fg . un is the normal velocity on the center of the cut272

faces Fn . Ag and An denote the area of the corresponding faces.273

Using the differential operator in Section 3.2, we rewrite Equation (7) in a matrix form as274

∆t ĜT
1 A1S1Ĝ1p1 + ∆t ĜT

Γ,1AΓSΓ (ĜΓ,1p1 + ĜΓ,2p2 )

= ĜT
1 A1u1 + ĜT

Γ,1AΓuΓ
(8)

where Ĝ1 is the pressure difference operator on the grid faces in Ω1 and the cut faces on Γ13. ĜΓ,1p1 + ĜΓ,2p2 is the275

pressure difference across the liquid-air-film interface Γ12. A1 andAΓ are the diagonal area matrices for the liquid faces276

in Ω1 ∪ Γ13 and the cut faces on Γ12, respectively. u1 is the velocity vector for the liquid faces in Ω1 ∪ Γ13 and uΓ is the277

velocity vector for the cut faces on Γ12.278

Air film279

Discretizing Equation (5) on a irregular air cell gives280
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∑
Ft

h2t At

12µ2

∂p2
∂ξt

+ ∆t
∑
Fn

An

ρ2

∂p2
∂ξn

=
∑
Ft

Atut +
∑
Fn

Anun (9)

where Ft is the set of the lateral half faces of the air cell, Fn is the set of the cut faces on its normal boundary in Γ12,281

ut is the boundary tangent velocity on the half faces which represents both ut↑ and ut↓ , un is the normal velocity on282

the center of the cut faces, ht is the thickness evaluated at the rim of the half face, At and An denote the area of the283

half faces and the cut faces.284

The matrix form of Equation (9) for the air film becomes285

1

12µ2
ĜT
2 V2Ĝ2p2 + ∆t ĜT

Γ,2AΓSΓ (ĜΓ,1p1 + ĜΓ,2p2 )

= ĜT
2 A2u2 + ĜT

Γ,2AΓuΓ
(10)

where Ĝ2 is the tangent difference operator mapping the pressure difference onto the half faces, V2 is a diagonal286

matrix denoting (
h2A

)
/d with the thickness h, half face area A and sample distance d evaluated on the half faces287

between two air cells. u2 is the tangent velocity vector containing ut↑ and ut↓ on the half faces.288

Fully-coupled system289

Combining Equation (8) and Equation (10) yields the fully-coupled system.290


∆t ĜT

1 A1S1Ĝ1 + ∆t ĜT
Γ,1AΓSΓĜΓ,1 ∆t ĜT

Γ,1AΓSΓĜΓ,2

∆t ĜT
Γ,2AΓSΓĜΓ,1 ∆t ĜT

Γ,2AΓSΓĜΓ,2 +
1

12µ2
ĜT
2 V2Ĝ2

 ·

p1

p2


=


ĜT
1 A1u1 + ĜT

Γ,1AΓuΓ

ĜT
2 A2u2 + ĜT

Γ,2AΓuΓ


(11)

This system is symmetric and positive definite and is amenable to high-performance algebraic multi-grid solvers.291

To ensure the volume conservation of each fluid region during the simulation, we adopt the divergence control method292

proposed in [78].293

5 | TIME INTEGRATION294

We summarize our temporal evolution scheme in Algorithm 1. At the beginning of each frame, the node-based level295

sets and the velocity fields are advected using the MacCormack method (Section 5.1). After the advection, the gap296

geometry is fixed (Section 5.2). Then, we generate the cut cells of the liquid volumes using the marching cube method297

and discretize the air film into single-layered irregular cells (Section 5.3). Body forces, including gravity, are applied298

explicitly, and the surface tension is solved implicitly on fluid regions (Section 5.4). Finally, our method couples the299

pressure degrees of freedom in the liquids and the air film through their interfaces and solves the two-way coupling300

system (Section 4).301
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5.1 | Advection302

As discussed in [13], the inertia of the air film can be considered negligible in simulation when the gaseous kinetic303

energy is much smaller compared to the Laplace pressure, which holds for all small-scale scenarios in our paper. There-304

fore, in this step, we only advect the liquid volumes. We perform the MacCormack method [79] to update the node-305

based level set and velocity field of each liquid volume according to its extrapolated velocity field. Given that the306

level set values, especially those distant from the interfaces, deviate from the expected values after the advection, we307

reinitialize level sets by employing the fast-marching algorithm.308

5.2 | Fixing gap geometry309

Due to the significant difference in scale of the system, even trivial numerical errors from advection and interpolation310

can lead to negative air film thickness. We address the issue by performing Jacobi-style iterations of local correction311

on the cut vertices with negative thickness. Given the cut vertex x on the grid edge e and the liquid interface ∂Ω1,j ,312

if it is found to be inside another liquid volume Ω1,k (φk (x) < 0), the local correction update the level set value on313

both nodes of e by φj + = ( |φk (x) | + hϵ )/2. hϵ is the minimal thickness threshold determined empirically.314

5.3 | Updating cell geometry315

In each time step, we update the cell geometry on both liquid volumes and the air film. For the liquid volumes, we316

regenerate the cut-cell mesh and reposition the pressure samples on the iso-surface. Based on the interface mesh of317

liquids, irregular air cells are constructed.318

Cut cells in liquid volumes319

For each liquid volume, we perform themarching cube algorithm on its node-based level set to obtain its cut-cell mesh.320

We then update the pressure samples on the cut cells, following a method proposed in [70], to achieve second-order321

accuracy and maintain discretization orthogonality on the cut cells.322

Irregular cells in the air film323

The process of the air cell construction is illustrated in Figure 7. Given a pair of liquid volumes {Ω1,j ,Ω1,k }, the air film324

is defined as the region where h < hmax . We employ graph theory to establish a many-to-many mapping between cut325

faces from two liquid volumes, and then group the neighboring cut faces to construct single-layered air cells.326

We first define an iso-contour surface at φj −φk = 0, which is also the ridge of min(φj ,φk ) . A set of ridge vertices327

V are sampled at the intersections of this ridge surface and the grid edges. Then, an auxiliary graph is initialized with328

these ridge vertices V and the cut faces Fj ∪ Fk as the graph nodes. Note that only the cut faces with local thickness329

Algorithm 1 Temporal evolution for a single timestep
1: Advect liquid level sets and velocity fields (Section 5.1)
2: Fix gap geometry to avoid penetration (Section 5.2)
3: Update cell geometry for liquid and air (Section 5.3)
4: Apply body forces
5: Solve implicit surface tension (Section 5.4)
6: Solve the two-way coupling system (Section 4)
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F IGURE 7 Illustration of irregular cell construction for the air film. Left: The surface mesh of two liquid volumes
Ωj ,Ωk (blue surface with wireframes) is visualized. First, the ridge vertices (black dots) are sampled at the
intersections of grid edges and the ridge surface (grey surface) where φj − φk = 0. Middle: Next, We construct a
graph with cut faces and ridge vertices as the graph vertices and initialize its edges based on the closest neighbor
search. We then divide the cut faces into multiple groups (colored mesh) based on the connectivity of the graph.
Right: Finally, the air cells (green cells) are constructed based on the groups of cut faces. For clarity purposes, only a
subset of air cells is visualized in this figure. The top and bottom boundaries of air cells are defined by the cut faces
(green faces). The lateral cell boundaries are defined by the half faces (grey faces) positioned along the edge of the
cut faces.

h < hmax are involved. We search for the closest cut faces for each ridge vertex and establish edges between each330

ridge vertex and its closest cut faces in Fj and Fk , as well as between each cut face and its closest ridge vertex. For331

each connected subgraph, we group the cut faces within the same subgraph and construct irregular air cells with these332

cut faces serving as their boundary meshes on air-fluid interfaces. The lateral cell boundary of a newly generated air333

cell is discretized as the half faces orthogonal to the rims of the boundary meshes as described in Section 3.1. The334

normal and tangential velocities on its boundary are interpolated from the velocity fields of corresponding liquid335

volumes and projected onto the corresponding directions. To determine the center of the air cell, we compute the336

average position of its vertices and project it onto the ridge surface.337

5.4 | Semi-implicit surface tension338

Instead of treating surface tension as the interface pressure jump in pressure projection, we solve the semi-implicit339

surface tension [46] on a narrow band around the interface weighted by a Dirac function for each fluid region inde-340

pendently. The faces within φ (x) < ∆xσ are included in the equation:341

(1 − 1

ρ
σ∆t 2+2 )u∗ = u + 1

ρ
δ (φ )σκ ®n∆t (12)

where the Dirac function is342

δ (φ) =
1 + cos πφ

∆xδ

2∆xδ
, if φ ∈ [−∆xσ ,∆xσ ] (13)
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F IGURE 8 Numerical validation of pressure transmission across the air film. A series of scenes are set up, where an
air film is confined in a piston filled with liquids, and a constant pressure pext = 1000 kPa is applied on the upper
boundary. The illustration of the scene and the plot of the pressure loss pext − p are shown. Left: A planar air film
trapped between two liquid regions in a piston. The pressure losses evaluated at x = 1.0, 0.84, 0.67, 0.5 mm show
that the external pressure is transmitted throughout the whole domain and results in an identical pressure field.
Middle: The same air film is trapped with its left and right boundaries connected to the ambient air. The same
pressure samples are evaluated, indicating that the thin film is capable of transmitting the majority of pressure even
close to the ambient air boundary. Right: An annular air film is trapped in the liquid, with a constant pressure applied
on the upper boundary. The radial pressure loss distribution and the pressure loss along the annular film are plotted,
which match the boundary pressure condition.

with the band width ∆xδ = 3∆x . The zero-velocity Dirichlet boundary condition is enforced. We then discretize343

Equation (12) as a symmetric linear system with u∗ as unknown values, and employ the algebraic multi-grid solvers344

for its solution.345

6 | RESULTS346

6.1 | Numerical validations in 2D347

To validate our coupled pressure projection, we set up a set of two-dimensional numerical tests.348
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F IGURE 9 The pressure transmission in Figure 8 (Middle) with different air film thickness h. The pressure loss along
the vertical lines at x = 0.5 mm is plotted.

6.1.1 | Air film pressure transmission349

In this two-dimensional test, a thin air film is trapped between two liquid volumes in a solid piston with zero gravity,350

as illustrated in Figure 8 (Left). A constant pressure is applied to the upper boundary of the liquid, resulting in a high351

pressure inside the piston. Due to the incompressibility, the analytical solution should be a constant pressure field352

throughout the entire domain. The simulation is conducted in a 1 mm×1 mm domain divided into a 64 × 64 grid. The353

air film locates at y = 0.5mm with the thickness h = 1 × 10−3mm. The density of the liquid and the air are ρ1 =354

1000 kg/m3, ρ2 = 1 kg/m3. A Dirichlet pressure boundary condition of pext =1000Pa is applied to the upper domain355

boundary and Neumann pressure boundary conditions are applied to all solid boundaries. The resulting pressure on356

vertical lines x = 1.0, 0.84, 0.67, 0.5 mm are identical to the constant external pressure, which is consistent with the357

analytical solution.358

6.1.2 | Air film pressure transmission with the open boundary359

We further assess the pressure transmission through the planar air film with its left and right boundaries connected360

to the ambient air, similar to the liquid-air-film system in real-world scenes. The configurations are identical to the361

test in Section 6.1.1, with the exception of the zero pressure boundary condition being applied at the left and right362

boundaries of the air film.363

We analyze the pressure loss distribution along four vertical lines at x = 0.0, 0.17, 0.34, 0.5 mm. The results in364

Figure 8 (Middle) show that although the pressure slightly decreases as it moves down, about 99.99% of the pressure365

is successfully transmitted to the lower liquid volume. Therefore, when two liquids collide, the thin air film acts like366

an air cushion even if it is connected to the ambient air, and is able to transmit the pressure between them to avoid367

coalescence.368

We also examine the effect of air film thickness on pressure transmission. Figure 9 shows the pressure loss369

sampled along the vertical line at x = 0.5 mm for various thicknesses h = 10−2, 3 × 10−2, 10−3, 10−4 mm. The results370

support the intuitive assumption that as the air film gets thinner, the pressure transmission loss across the air film371

decreases.372
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F IGURE 10 Convergence validation of pressure in the air film with varying thickness. We investigate the
convergence behavior of our method in a scene with a 2D thin air film of varying thickness. Left: The scene overview
depicts varying pressure applied to the top boundary, with a thin air film (green) of thickness ranging from hc to hbtrapped between two liquid volumes (blue). Middle: The resulting pressure distribution within the air film at different
resolutions. Right: The convergence rate is depicted, showing a decrease in average pressure error as resolution
increases.

6.1.3 | Annular air film pressure transmission373

In Figure 8 (Right), we demonstrate the ability of our solver to handle a curved air film. An annular air film is trapped in374

the liquids, with the same boundary conditions in Section 6.1.1. The film is centered in the domain with the thickness375

h = 1 × 10−3mm and radius 0.25mm. the constant pressure is obtained throughout the liquid volume and the air film,376

in agreement with the analytic solution.377

6.1.4 | Air film pressure at different resolutions378

To further validate the convergence behavior of our method, we examine a scenario involving a thin film trapped379

between two liquid volumes, as illustrated in Figure 10 (Left). An external pressure is applied at the upper bound-380

ary, following the function pext (x ) = 100 × (0.52 − (x − 0.5)2 ) kPa. We define the film thickness as h (x ) = hc +381

R −
√
R 2 − (x − 0.5)2, mimicking the thin film trapped between a spherical droplet and a planar liquid tank. Specif-382

ically, we set hc = 10−5 mm and R = 12500 mm, ensuring that the thickness ranges within [hc , hb ](hb = 2 × 10−5383

mm). We solve this static scene at various resolutions and plot the resulting pressure distribution within the air film384

in Figure 10 (Middle), showing convergence towards a consistent curve. Additionally, we compute the average ab-385

solute error by comparing the air film pressure with that at resolution 1024 × 1024, as depicted in Figure 10 (Right),386

demonstrating convergence as the resolution increases.387

6.1.5 | Droplet impact with different film height thresholds388

We simulate a two-dimensional droplet impacting a liquid bath to evaluate the effect of hmax , which is used as a389

numerical threshold to distinguish the air film from the ambient air. The simulation is initialized in a 1 mm×1 mm390

domain with ∆x = 1/64mm, where the droplet is placed at (0.5, 0.5) with radius r = 0.15mm and the bath is initialized391

with the depth hB = 0.3mm. The surface tension of the liquid is σ = 1.66mN/m and its density is ρ1 = 1000 kg/m3.392

The air density is ρ2 = 1 kg/m3 and its viscosity is µ2 = 18.6uPas The simulation is run with the gravity g = −9.8m/s2393

and the time step ∆t = 5 × 10−4 s.394
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F IGURE 11 A 2D droplet falls on the liquid bath with different air film height thresholds hmax = 3∆x , 5∆x , 7∆x

Figure 11 shows the results with hmax = 3∆x , 5∆x and 7∆x , which validates that the thickness threshold won’t395

affect the overall motion of the simulation. We also found that a small threshold hmax = ∆x would lead to instability396

due to the potential incorrect geometry in air film initialization, while a too-large threshold would introduce additional397

overhead on thick air film where the resulting pressure has a negligible effect on the liquids. Therefore, we use398

hmax = 5∆x for the remaining simulations in this work.399

6.1.6 | Binary collision at different resolutions400

We also conduct simulations of two-dimensional binary droplet collisions to assess convergence under varying resolu-401

tions. The scene is set within a domain of 1mm×1mm, where two droplets with a radius of r = 0.15mm are initialized402

at (0.5 ± 0.27, 0.5) with opposite initial velocities of 60 mm/s.403

Figure 12 depicts the results obtained with resolutions 64 × 64, 128 × 128, 192 × 192, 256 × 256, 320 × 320. The404

absolute error is shown in Figure 12 (Bottom left). The y-axis radii of the droplets (r0, r1) are evaluated as half the405

width of the droplets. As the resolution increases, the simulations tend to converge toward consistent results, with a406

decreasing convergence rate.407

6.1.7 | Binary droplet collision, trinary droplet collision, bouncing droplet in 2D408

In Figure 6 (Top), we simulate the two-dimensional binary collision by emitting two identical spherical droplets with409

opposite initial velocities. During the head-on collision, the air film exerts resistance to droplet coalescence, resulting410

in the droplets bouncing apart. We also simulate the trinary collision in Figure 6 (Middle), which demonstrates the411

ability of our method to handle non-manifold joints in thin films.412

We further simulate the two-dimensional bouncing droplet. The bath oscillates vertically with the period 0.02 s413

and the peak acceleration 9.8m/s2. As shown in Figure 6 (Bottom), the droplet is able to bounce over the bath414

periodically and stably for a long time, which indicates the stability of our algorithm.415
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F IGURE 12 2D binary droplet collision at various resolutions. Top: Simulation results with resolutions of 64 × 64,
128 × 128, 192 × 192, 256 × 256, 320 × 320. Bottom left: Absolute error of two droplet radii (r0, r1) in y-axis and their
centroid distance (d ) evaluated at t = 0.0255s . Bottom middle and right: Zoomed-in results of the upper part of the
left droplet at t = 0.0150, 0.0255s .

6.2 | Binary droplet collision416

We follow the experimental study [1] to set up the experiments of head-on binary tetradecane droplet collisions. Two417

tetradecane droplets are initialized in 1 atm ambient air, with the density ρ1 = 762 kg/m3 and the surface tension418

coefficient σ = 26.56mN/m. The density of the air film trapped in the gap is ρ2 = 1 kg/m3, and the viscosity is µ2 =419

18.6uPas. The simulation is conducted with the time step ∆t = 5 × 10−6 s on a 256 × 128 × 128 background grid with420

∆x = 1/128 mm.421

In Case I, the droplets with the radius R = 0.1706mm are placed along the x -axis with the distance between the422

droplet centers D0 = 2.5R and emitted in opposite directions with an initial velocity V0 = 0.243m/s. In Case II, the423

collision occurs between two droplets with the radius R = 0.1676mm and the initial velocityV0 = 0.496m/s, resulting424

in larger deformation. The Weber number is We= 2.27 for Case I and is We= 9.33 for Case II.425

The time series of the droplets are visualized in Figure 13 with our simulation results and the photographs ob-426

tained from the experiments in [1]. Specifically, four representative frames are compared, including the initial contact,427

maximum deformation, rebound, and detachment. Our results, which use the same configurations, agree well with428

the experimental results in terms of contact time and droplet deformation.429
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F IGURE 13 Time evolution of the binary droplet collision for Case I and II. Top and Bottom: Representative frames
of the rendered images from our simulation and the experimental snapshots from [1]. Middle: The evolution of the
x -axis positions of two droplets. The regions filled by the light color are the x -axis bounding box of two droplets.
Solid lines denote the x -axis center position of two droplets.

6.3 | Trinary droplet collision430

We further conduct the experiment where three tetradecane droplets collide and rebound. We emit three tetrade-431

cane droplets with radius R = 0.1706mm in 1 atm ambient air, with the density ρ1 = 762 kg/m3, the surface tension432

coefficient σ = 26.56mN/m and the initial velocity V0 = 0.5m/s . The density of the air film is ρ2 = 1 kg/m3, and the433

viscosity is µ2 = 18.6uPas. We discretize the domain on a 128 × 128 × 128 background grid with ∆x = 1/128 mm and434

conduct the simulation with the time step ∆t = 5 × 10−6 s.435

The simulation result is depicted in Figure 14, showcasing the collision of three identical droplets followed by436

their rebound. Note that the air film exhibits a non-manifold joint, demonstrating the ability of our method to handle437

complex non-manifold geometry.438
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F IGURE 14 Time evolution of the trinary droplet collision. Three droplets collide, form a non-manifold gap
between them and subsequently rebound.

t=0.0248s t=0.0456s t=0.0664s t=0.0872s

F IGURE 15 Time evolution of a droplet bouncing on a vibrating bath in (2, 1) mode. Top: Rendered images of four
representative frames. Bottom: Temporal evolution of the scene. The solid line denotes the movement of the droplet
center, and the dashed line denotes the bath movement. The background image is generated by stitching the
successive simulation frames, where a cropped vertical section represents each frame through the droplet center.

6.4 | Bouncing droplet on a vibrating bath439

We reproduce the bouncing droplet reported in [2] where a silicon oil droplet is released on an oscillating silicon oil440

bath. The container is vibrating vertically with the acceleration aB = γsi n (2πf t ) , where f is the frequency, and γ is441

the peak acceleration. As discussed in [2], different periodic bouncing modes (m, n ) of the droplets are observed. In442

a (m, n ) bouncing mode [27, 2], the droplet bounces steadily with the period equal tom/n times of the bath vibration443

period. Intuitively, it means the droplet contacts the bath n times within m bath oscillating periods.444

In our simulation, we release a silicon oil droplet with the undeformed radius R0 = 0.39mm , with surface tension445

σ = 20.6mN/m and density ρ1 = 949 kg/m3. The bath is shaken vertically with f = 50Hz and γ = 35.28m/s2. The446

non-dimensional bath acceleration is Γ = γ/g = 3.6. The simulation is conducted in a 5 × 5 × 5 mm domain divided447

into 2563 grid cells, with the time step ∆t = 2 × 10−4 s.448

In Figure 15, the vertical sections through the droplet center are rendered and joined together by frame order.449
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F IGURE 16 The air film pressure distribution of the bouncing droplet. Top left: The section view of the domain
across the droplet center at t = 0.0282s . The background grid is colored with the checkerboard pattern to visualize
the cells. Top right: A zoom-in section view of the pressure distribution in the air film. The coordinate system is
stretched vertically to enhance visualization. Bottom: The pressure distribution in the air film during the first impact.
The pressures are sampled on the same section across the droplet center.

The droplet trajectory and the sinusoidal motion of the liquid surface are plotted on the spatiotemporal image. Our450

simulation reproduces the (2, 1) bouncing mode reported in [2], where the droplet bounces once every two vibration451

periods of the bath. Whenever the droplet touches the bath, the bath is always in its upward phase of the period and452

propels the droplet back.453

The pressure distribution in the air film on a cross-section across the droplet center is visualized in Figure 16. At454

the beginning of the impact, a narrow pressure peak in the air film arises due to the large relative velocity between455

the two liquids. As the droplet deforms, the pressure is distributed over a larger area of the air film. As its upward456

velocity is restored, the air film pressure declines until the droplet separates from the bath.457

6.5 | Promenading pairs of droplets458

As reported in the previous work [38], when two identical droplets bounce on an oscillating liquid bath, they exhibit a459

behavior known as the promenading mode. In this mode, the droplets interact with each other through the wave field460

and vibrate laterally along the line across their centers. In our simulation, the silicon oil with the density ρ1 = 949 kg/m3461

and the surface tension σ = 20.6mN/m is used for both droplets and the liquid bath. The radius of the undeformed462

droplets is R = 0.8mm, and the bath is vibrated vertically with f = 80Hz, Γ = 0.45 and γ = 4.41m/s2. The initial distance463

between the droplet centers isD0 = 4mm in Case I andD0 = 2.4mm in Case II. To reduce the accumulated error caused464

by long-term simulation, we simulate the two phases (approaching and leaving each other) of the promenading mode465

separately over several vibration periods. The simulation domain is discretized on a 256 × 170 × 256 with ∆x = 15/256466
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F IGURE 17 The two droplets bounce on the vibrating bath and form the promenading pairs. Left: Rendered result
for Case I, where two droplets bounce and move away from each other. Middle: Rendered result for Case II, where
the droplets move towards each other. Right top: The droplet positions as a function of time t . The colored stripes
indicate the x -axis bounding box of droplets. The solid lines represent the trajectories of the droplet centers. Right
bottom: The droplet distances as a function of time t .

mm. The time step is ∆t = 1 × 10−4 s.467

The simulation results in Figure 17 show that our method is capable of capturing the interaction between two468

droplets through the wave field and reproducing two phases of the promenading modes. In Case I, with a small initial469

droplet distance, two droplets bounce and move away from each other, while in Case II, with a larger distance, they470

bounce and move towards each other. The trajectories of two droplets and their distances are plotted aside.471

In this scene, we demonstrate that our algorithm is compatible with multiple liquid volumes. By using separate472

field discretization for each liquid volume, minimal modifications are required when applying the algorithm to multiple473

liquid volumes. In particular, the air film construction and the region topological change step (splitting and merging)474

are executed sequentially for all possible liquid volume pairs in cases with multiple liquids.475

6.6 | Merging and pinching476

As shown in 18, we reproduce the droplet pinch-off with a large droplet (R = 10mm) released on a still bath, similar477

to [23]. When the large droplet touches the liquid bath, it merges with the liquid surface. Following the merging, a478

thin liquid column emerges, breaks off, and eventually pinches off a small droplet due to the surface tension, which is479

able to sit on the bath for several seconds.480

We simulate the scene with a 256 × 128 × 256 grid with ∆x = 120/256mm and ∆t = 2 × 10−4 s. The density of the481

liquid is ρ1 = 949 kg/m3 and the surface tension is σ = 1333.3mN/m.482

When the large droplet touches the liquid bath, the negative thickness correction is turned off tomimic the droplet483

merging caused by the Van der Waals force. After the droplet merges with the bath, we switch to the semi-implicit484

surface tension to avoid the numerical viscosity at the thin liquid neck. The weight wexp = 0.3 is used for the explicit485

surface tension part and wimp = 0.7 for the implicit part. After the pinch-off, we switch back to the implicit surface486

tension solver.487

The topological changes of the liquid volumes, including splitting and merging, are resolved automatically on the488
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F IGURE 18 Droplet merging and pinching. A large droplet falls and merges with the bath, which causes a thin
liquid column to form due to the surface tension. The column eventually breaks off and pinches off a smaller droplet
bouncing on the bath.

TABLE 2 Physical parameters in the scenes
Scene |g |(m/s2) ρ1(kg/m3) σ1(mN/m) ρ2(kg/m3) µ2(µPas)
Binary Collision (I & II) − 762 26.56 1 18.6

Trinary Collision − 762 26.56 1 18.6

Bouncing Droplet 9.8 949 20.6 1 18.6

Promenading Pairs (I & II) 9.8 949 20.6 1 18.6

Merging and Pinching 9.8 949 1333.3 1 18.6

node-based level sets. To detect splitting, we execute the flood fill algorithm on each liquid volume level set. When489

multiple connected components are found, the fluid region is split and these connected components are converted490

into new fluid regions, each with its own level set and velocity field sampled from the original liquid volume. Merging491

of two regions is identified when their level sets overlap. It is detected when a cut vertex on the grid edge of the492

region Ω1,j is inside of another region Ω1,k , as indicated by φk (x) < 0. The regions are then replaced by a newly493

merged region, whose level set is constructed as φ = min(φj ,φk ) . The velocity field of the merged region is copied494

from the original regions. Specifically, the velocity on the overlapping face is assigned as the average velocity of two495

original regions.496

6.7 | Performance497

The physical parameters of the scenes are summarized in Table 2. All the simulations are performed on a PC with498

Intel® Xeon® E5-2620 v4 2.10GHz CPU. We use the AMGPCG solver in AMGCL[80] to solve the linear system in499

the implicit surface tension and pressure projection steps. The simulation configurations and timings are listed in Table500

3. All the three-dimensional simulations are rendered using Houdini.501
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TABLE 3 Simulation configuration and timings
Scene grid resolution ∆x (mm) ∆t (s) Iter/Frame Time/Frame(s) #DoFs(103)
Binary Collision I 256 × 128 × 128 1/128 5 × 10−6 1.18 14.37 96.63

Binary Collision II 256 × 128 × 128 1/128 5 × 10−6 1.18 14.20 91.85

Trinary Collision 128 × 128 × 128 1/64 5 × 10−6 1.00 5.60 19.97

Bouncing Droplet 256 × 256 × 256 5/256 2 × 10−4 3.12 128.02 6750.88

Promenading Pairs I 256 × 170 × 256 15/256 1 × 10−4 1.16 56.96 5446.76

Promenading Pairs II 256 × 170 × 256 15/256 1 × 10−4 1.14 53.28 5448.75

Merging and Pinching 256 × 128 × 256 15/32 2 × 10−4 1.19 27.23 2854.92

7 | SUMMARY502

This paper proposed a novel computational approach for simulating the bouncing droplet phenomena, with a particular503

focus on capturing and solving the air film that plays an essential role in fluid collision and coalescing. Based on the504

cut-cell fluids tracked by separate level sets, we discretize the entrained air film as a single layer of irregular cells that505

are tightly embedded within the gap formed by adjacent cut-cell fluid interfaces. This allows for efficient handling of506

the complex film geometry without the need for tedious grid refinement. Building upon this discretization, we model507

the air film as a thin lubricated layer and couple it with the inviscid incompressible liquid in a monolithic manner. Our508

method reproduces a wide range of phenomena, including binary collision, bouncing droplets, promenading pairs,509

and droplet pinch-off, demonstrating its ability to capture many critical dynamical features by accurately resolving the510

lubricated air flow with liquids.511

We identify several limitations and future work directions based on our current approach. First, our system does512

not handle viscosity in the fluid domain. One immediate next step is to add viscosity to the liquid model, which513

has been proven important in driving droplet walking behaviors [2]. In particular, we plan to focus on the interfacial514

viscosity coupling between liquid volumes and the air film. Second, the physical accuracy of our fluid-fluid coalescence515

model can be improved. For example, introducing the Van der Waals force into our continuous flow model is an516

interesting future direction, which will allow the solver to predict the bouncing and coalescence behaviors based on517

multiscale physical principles. Third, due to the computing resolution and boundary conditions, our solver currently518

cannot model the interfacial wave dynamics accurately, which limits its capability in handling complex drop-wave519

interactions such as the pilot drop dynamics [35]. In particular, devising a direct numerical solver to reproduce the full-520

scale dynamics of a walking droplet and further explore its quantum-mechanics connections still remains challenging521

(and alluring). Last, our current model can only handle thin films between fluid volumes. Extending the proposed cut-522

cell algorithm to facilitate simulations with more complicated physics, e.g., to capture the air gap between droplets523

and elastic thin sheets, filaments, and fluffy surfaces, will open up new opportunities for this model in accommodating524

physical simulations in a wider scope.525
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A | LUBRICATION MODEL IN THE AIR FILM689

As two liquid regions approach each other, the thickness of inter-liquid film between them decreases. The dimension690

of the film in the normal direction becomes much smaller than its dimension in the tangential direction, and the691

viscosity drag becomes the dominant force. Through order analysis, we model the air flow in the gap using the692

lubrication theory[75].693

In the lubricated film, the normal and tangent gradient of the air pressure are modeled as694


∂p2
∂ξt

= µ2
∂2ut

∂ξ2n
,

∂p2
∂ξn

= 0,

x ∈ Ω2, (14)

with695


[p2 ] = −γκ, x ∈ Γ12,

[p2 ] = 0, x ∈ Γ23 .
(15)

where ξn and ξt denote the local unit normal and tangent directions, respectively, un ,ut are normal and tangent696

components of the air velocity, respectively.697

To derive the equation that updates the tangential velocity by the pressure gradient, we integrate the first equation698

in Equation 14 with respect to the normal direction ξn :699

ξn
∂p

∂ξt
= µ

(
∂ut
∂ξn

− ∂ut
∂ξn

|ξn=0
)

(16)

Then we integrate it again on the intervals [0, ξn ] and [0, h ] (h is the thickness of the air film):700

ξ2n
2

∂p

∂ξt
= µ

(
ut (ξn ) − ut (0) − ξn

∂ut
∂ξn

|ξn=0
)

h2

2

∂p

∂ξt
= µ

(
ut (h ) − ut (0) − h

∂ut
∂ξn

|ξn=0
) (17)
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By combining these two equations to eliminate ∂ut
∂ξn

|ξn=0 and applying the boundary conditionsut (h ) = ut↑ ,ut (0) =701

ut↓ , the tangential velocity of the air film is given as:702

ut (ξn ) = −ξn
h − ξn
2µ

∂p

∂ξt
+ h − ξn

h
ut↓ +

ξn
h
ut↑ (18)

The average tangent velocity of the film can be obtained by integrating the tangent velocity from ξn = 0 to ξn = h703

hu∗t =

∫ h

0
ut (ξn )dξn

=

∫ h

0

(
−ξn

h − ξn
2µ

∂p

∂ξt
+ h − ξn

h
ut↓ +

ξn
h
ut↑

)
dξn

=

(
− ξ2nh

4µ

∂p

∂ξt
+ ξ3n
6µ

∂p

∂x
+ ξnut↓ +

ξ2n
h
(ut↑ − ut↓ )

)
|h0

=
h3

12µ

∂p

∂ξt
+ h

2
(ut↑ + ut↓ )

(19)

Thus the average tangent velocity of the air film is704

u∗t = − h2

12µ

∂p

∂ξt
+ 1

2
ut↑ +

1

2
ut↓ (20)

In the normal direction, the velocity on the interface Γ12 is updated by the pressure gradient across the liquid and705

the air.706

u∗n = un − ∆t

ρ2

∂p2
∂ξn
,x ∈ Γ12 (21)

Given a volumeV in the air film with its tangent boundary ∂Vt and normal boundary ∂Vs ⊆ Γ12, the incompress-707

ibility is achieved by summing up the integrated flow through the boundary:708

∫
∂Vt

u∗t ds +
∫
∂Vn

u∗nds = 0 (22)

Substituting Equation (20) and (21) into it yields the reduced model for the air film:709

∫
∂Vt

h2

12µ

∂p2
∂ξt

ds + ∆t

∫
∂Vn

1

ρ2

∂p2
∂ξn

ds =

∫
∂Vt

ut↑ + ut↓
2

ds +
∫
∂Vn

unds (23)

with710
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
[p2 ] = −γκ, x ∈ Γ12,

[p2 ] = 0, x ∈ Γ23 .
(24)


